ARTICLE

NANOPARTICLES MEDIATED PLANT GENETIC ENGINEERING EMERGING FIELD WITH PROMISING APPLICATIONS

05 Pages : 34-53

http://dx.doi.org/10.31703/giidr.2024(IX-I).05      10.31703/giidr.2024(IX-I).05      Published : Mar 2024

Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications

    Nanobiotechnology significantly enhances plant genetic engineering procedures by using nanocarriers such as metal, carbon-based, and polymeric nanoparticles to transfect and transport nucleic acids and proteins to deliver genes with maximum efficiency and translation. It improves the ability of the plants to be transformed using Agrobacterium, poses gradual serious limitations concerning the transfer of genes, and enhances the tolerance of plants to stress. One example is gene editing Crispr/Cas which uses nanoparticles to promote appropriate procedures.In addition, by using nanosensors and nanodevices in practical work it is rather possible to control in the real-time province of gene expression as well as everything occurring around the modified organism, which in turn helps to increase the efficiency of producing genetic modifications. This development can also improve the quality of the harvested crops, and the production yield, play a role in fight against food shortage that is prevalent in the global world like today.

    Nanoparticles, Plant Genetic Engineering, Genetic Modification, Biotechnology, Agricultural Innovation, Gene Delivery.
    (1) Nadia Iqbal
    MPhil Scholar, National Institute for Biotechnology and Genetic Engineering (NIBGE -C), Pakistan Institute of Engineering and Applied Sciences PIEAS, Islamabad,Pakistan.
    (2) Babur Ali Akbar
    MPhil Scholar, Centre of Agricultural Biochemistry and Biotechnology, Plant transgenic laboratory, University of Agriculture Faisalabad, Punjab, Pakistan.
    (3) Nayab Taskeen
    MPhil Scholar, Centre of Agricultural Biochemistry and Biotechnology, Soybean genomics Lab, University of Agriculture Faisalabad Pakistan.
    (4) Muhammad Mubashar
    MPhil Scholar, Centre of Agricultural Biochemistry and Biotechnology (CABB), Transformation Lab, University of Agriculture Faisalabad, Punjab, Pakistan.
  • Adachi, K., Hirose, A., Kanazashi, Y., Hibara, M., Hirata, T., Mikami, M., Endo, M., Hirose, S., Maruyama, N., Ishimoto, M., Abe, J., & Yamada, T. (2021). Site-directed mutage

  • Alekseeva, I. V., & Kuznetsov, N. A. (2023). Historical aspects of restriction endonucleases as intelligent scissors for genetic engineering. Fermentation, 9(10)

  • Alghuthaymi, M. A., Ahmad, A., Khan, Z., Khan, S. H., Ahmed, F. K., Faiz, S., Nepovimova, E., Kuča, K., & Abd-Elsalam, K. A. (2021). Exosome/Liposome-like nanoparticles: new carriers for CRISPR genome editing in plants. I

  • Ali, Z., Serag, M. F., Demirer, G. S., Torre, B., Di Fabrizio, E., Landry, M. P., Habuchi, S., & Mahfouz, M. (2022). DNA–Carbon nanotube binding mode determines the efficiency

  • Alsaiari, S. K., Patil, S., Alyami, M., Alamoudi, K. O., Aleisa, F. A., Merzaban, J. S., Li, M., & Khashab, N. M. (2017). Endosomal escape and delivery of CRISPR/CAS9 genome editing machinery enabled by Nanoscale Zeolitic Im

  • Azizi-Dargahlou, S., & Pouresmaeil, M. (2023). Agrobacterium tumefaciens-Mediated Plant Transformation: A review. Molecular Biotechnology.

  • Bala, R., Kalia, A., & Dhaliwal, S. S. (2019). Evaluation of efficacy of ZNO nanoparticles as remedial zinc nanofertilizer for rice. Journal of Soil Science and Plant Nutri

  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of Nanoscience and Nanotechnology: From Chemical–Physical applications to Nanomedicine. <

  • Behl, K., Jaiswal, P., & Pabbi, S. (2024). Recent advances in Microbial and Nano-Formulations for effective delivery and agriculture sustainability. Biocatalysis and Agricultural Biotechnology, 103180.

  • Bora, S., Pooja, D., & Kulhari, H. (2024). Introduction of nanoscience and nanotechnology. In Nanotechnology based delivery of phytoconstituents and cosmeceuticals (pp. 1–38). Springer.

  • Bošnjak, B., Permanyer, M., Sethi, M. K., Galla, M., Maetzig, T., Heinemann, D., Willenzon, S., Förster, R., Heisterkamp, A., & Kalies, S. (2018). CRISPR/CAS9 genome editing u

  • Brown, T. A. (2020). Gene cloning and DNA analysis: An Introduction. John Wiley & Sons.

  • Cai, Y., Liu, Z., Wang, H., Meng, H., & Cao, Y. (2023). Mesoporous silica nanoparticles mediate SiRNA delivery for Long‐Term Multi‐Gene silencing in intact plants. Advanced Science, 11(9).

  • Cheng, W. J., Chen, L. C., Ho, H. O., Lin, H. L., & Sheu, M. T. (2018). Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles nonco

  • Cunningham, F. J. (2022). Conjugating CRISPR-Cas9 machinery to single-walled carbon nanotubes for plant cellular delivery (Doctoral dissertation, University of California, Berkeley).

  • Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., & Landry, M. P. (2018). Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends in B

  • Deng, Q., Huang, S., Liu, H., Lu, Q., Du, P., Li, H., Li, S., Liu, H., Wang, R., Huang, L., Sun, D., Wu, Y., Chen, X., & Hong, Y. (2024). Silica nanoparticles conferring resistance to bacterial wilt in peanut (Arachis hypoga

  • Duan, L., Ouyang, K., Xu, X., Xu, L., Wen, C., Zhou, X., Qin, Z., Xu, Z., Sun, W., & Liang, Y. (2021). Nanoparticle delivery of CRISPR/CAS9 for genome editing. Frontiers in

  • Duan, W., Hao, Z., Pang, H., Peng, Y., Xu, Y., Zhang, Y., Zhang, Y., Kang, Z., & Zhao, J. (2023). Novel stripe rust effector boosts the transcription of a host susceptibility

  • El-Fawy, M. M., Ahmed, S. A., Korrat, R. a. A., Abo-Elyousr, K. a. M., Mousa, M. a. A., Ibrahim, O. H. M., & Saeed, A. S. (2024). Effectiveness of Epicoccum nigrum and Silver

  • El-Ganainy, S. M., Mosa, M. A., Ismail, A. M., & Khalil, A. E. (2023). Lignin-Loaded Carbon Nanoparticles as a Promising Control Agent against Fusarium verticillioides in Maiz

  • El-Shetehy, M., Moradi, A., Maceroni, M., Reihnardt, D., Petri-Fink, A., Rothen-Rutishauser, B., Mauch, F., & Schwab, F. (2020). Silica nanoparticles enhance disease resistanc

  • Fashola, M. O., Obayori, O. S., Adebiyi, K. O., Abiona, O. O., Opere, B. O., & Bello, O. O. (2021). Application of Nanobiotechnology in Agri-Food sector: A promising technique

  • Fizree, M. P. M. a. A., Masani, M. Y. A., Shaharuddin, N. A., Chai-Ling, H., Manaf, M. a. A., & Parveez, G. K. A. (2023). Efficient PEG-mediated transformation of oil palm mesophyll protoplasts and its application in functio

  • Gad, M. A., Li, M., Ahmed, F. K., & Almoammar, H. (2020). Nanomaterials for gene delivery and editing in plants: Challenges and future perspective. In Elsevier eBooks (

  • Gao, C., & Nielsen, K. K. (2012). Comparison between Agrobacterium-Mediated and Direct Gene Transfer using the gene Gun. In Methods in molecular biology (pp. 3–16).

  • Gull, I., & Jander, G. (2023). Inoculation of Maize with Sugarcane Mosaic Virus Constructs and Application for RNA Interference in Fall Armyworms. Bio-protocol, 13

  • Hassan, N., & Siddiqui, F. (2024). Merging nanotechnology and biotechnology: Transforming plant sciences with nanobiotechnological innovations. International Journal of Applied Machine Learning and Computationa

  • Hegedűs, G., Kutasy, B., Kiniczky, M., Decsi, K., Juhász, Á., Nagy, Á., Pallos, J. P., & Virág, E. (2022). Liposomal Formulation of Botanical Extracts May Enhance Yield Trigge

  • Hernandez, E. S. (2021). Layered double hydroxide (LDH)-mediated topical delivery of dsRNA for protection against Tomato yellow leaf curl virus (TYLCV) in Nicotiana benthamiana

  • Hulla, J., Sahu, S., & Hayes, A. (2015). Nanotechnology. Human & Experimental Toxicology, 34(12), 1318–1321.

  • Islam, T., Kalkar, S., Tinker-Kulberg, R., Ignatova, T., & Josephs, E. A. (2023). The “Duckweed Dip”: Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-

  • Jaithon, T., Atichakaro, T., Phonphoem, W., T-Thienprasert, J., Sreewongchai, T., & T-Thienprasert, N. P. (2024). Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xan

  • Jing, X., Liu, Y., Liu, X., Zhang, Y., Wang, G., Yang, F., Zhang, Y., Chang, D., Zhang, Z., You, C., Zhang, S., & Wang, X. (2024). Enhanced photosynthetic efficiency by nitrog

  • Johnson-McDaniel, D., Barrett, C. A., Sharafi, A., & Salguero, T. T. (2013). Nanoscience of an ancient pigment. Journal of the American Chemical Society, 135(5),

  • Johnson, K., Chu, U. C., Anthony, G., Wu, E., Che, P., & Jones, T. J. (2023). Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. Frontiers in Plant Science, 14.

  • Juneja, R., Vadarevu, H., Halman, J., Tarannum, M., Rackley, L., Dobbs, J., Marquez, J., Chandler, M., Afonin, K., & Vivero-Escoto, J. L. (2020). Combination of nucleic acid and mesoporous silica nanoparticles: optimization

  • Kaziem, A. E., Yang, L., Lin, Y., Xu, H., & Zhang, Z. (2022). Β-Glucan-Functionalized mesoporous silica nanoparticles for smart control of fungicide release and translocation

  • Khan, S., Khan, R. S., Khalid, A., Gul, M., Brekhna, N., Wadood, A., Zahoor, M., & Ullah, R. (2024). Biomedical and agricultural applications of gold nanoparticles (AuNPs): a

  • Khanna, K., Ohri, P., & Bhardwaj, R. (2023). Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. Environmental Science and Pollution Research International

  • Kornarzyński, K., Sujak, A., Czernel, G., & Wiącek, D. (2020). Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. unde

  • Kráľová, K., & Jampílek, J. (2023). Effects of nanoparticles/nanotubes on plant growth. In Elsevier eBooks (pp. 183–237).

  • Kumar, R., Duhan, J. S., Manuja, A., Kaur, P., Kumar, B., & Sadh, P. K. (2022). Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancoze

  • Kuzmanović, N., Wolf, J., Will, S. E., Smalla, K., diCenzo, G. C., & Neumann-Schaal, M. (2023). Diversity and Evolutionary History of Ti Plasmids of “tumorigenes” Clade of Rhi

  • Lee, K., Conboy, M., Park, H. M., Jiang, F., Kim, H. J., Dewitt, M. A., Mackley, V. A., Chang, K., Rao, A., Skinner, C., Shobha, T., Mehdipour, M., Liu, H., Huang, W., Lan, F., Br

  • Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., & Fang, X. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 9(3)

  • Liu, S., Su, C., Zhang, D., Song, Z., Wang, X., Wang, J., & Yuan, X. (2023). Construction of a Delivery Platform for Vaccine Based on Modified Nanotubes: Sustainable Prevention against Plant Viral Disease, Simplified Prepara

  • Lizzi, D. (2020). Cerium oxide nanoparticles influence the life cycle of spontaneous plant species. .

  • Lv, Z., Jiang, R., Chen, J., & Chen, W. (2020). Nanoparticle‐mediated gene transformation strategies for plant genetic engineering. Plant Journal, 104(4), 880–89

  • Martin-Ortigosa, S., Peterson, D. J., Valenstein, J. S., Lin, V. S., Trewyn, B. G., Lyznik, L. A., & Wang, K. (2013). Mesoporous silica Nanoparticle-Mediated Intracellular CRE

  • Martin-Ortigosa, S., & Wang, K. (2014). Proteolistics: a biolistic method for intracellular delivery of proteins. Transgenic Research, 23(5), 743–756.

  • Martin‐Ortigosa, S., Valenstein, J. S., Lin, V. S., Trewyn, B. G., & Wang, K. (2012). Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to

  • Mawale, K. S., & Giridhar, P. (2024). Chitosan nanoparticles modulate plant growth, and yield, as well as thrips infestation in Capsicum spp. International Journal of Biological Macromolecules, 254, 127682.

  • Men, J. L., Zhang, Y. T., Pei, Y. B., Li, N., Xiang, J. H., & Zhou, H. L. (2024). Development of a PEI-coated SWNTs Nanocarrier for efficient delivery of CRISPR/Cas9 in early

  • Meng, Z., Wu, Q., Wu, X., Yang, C., Xu, W., Lin, T., Liang, Y., & Chen, X. (2024). Nanoparticles of Fe3O4 Loaded with Azoxystrobin and Pectin to Enhance Resistance of Rice to

  • Mishra, D., Chitara, M. K., Upadhayay, V. K., Singh, J. P., & Chaturvedi, P. (2023). Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet (Eleusine coracana (L.) Gaertn.) under drou

  • Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q., & Xu, Z. P. (2017). Clay nanosheets for topical deliv

  • Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle characterization: what to measure? Advanced Materials, 31(32).

  • Mohamed, M. A., Mohamed, A. E. A., & Abd-Elsalam, K. A. (2019). Magnetic nanoparticles in plant protection: promises and risks. In Nanotechnology in the life sciences (

  • Marzano, S. L., Beligala, G., Mukherjee, S., & Feng, C. (2023). Double-stranded RNA targeting white mold Sclerotinia sclerotiorum argonaute 2 for disease control via spray-ind

  • Nabil, M., Elnouby, M., Al-Askar, A. A., Kowalczewski, P. Ł., Abdelkhalek, A., & Behiry, S. I. (2024). Porous silicon nanostructures: Synthesis, characterization, and their an

  • Naidu, S., Pandey, J., Mishra, L. C., Chakraborty, A., Roy, A., Singh, I. K., & Singh, A. (2023). Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biot

  • Pal, G., Ingole, K. D., Yavvari, P. S., Verma, P., Kumari, A., Chauhan, C., Chaudhary, D., Srivastava, A., Bajaj, A., & Vemanna, R. S. (2024). Exogenous application of nanocarrier‐mediated double‐stranded RNA manipulates phy

  • Parthasarathy, S. P., Anusuya, S., Rajalakshmi, S., Megha, D., Appunu, C., Alagumanian, S., & Manickavasagam, M. (2024). Elucidating the efficacy of functionalized multi-walle

  • Peng, C., Tong, H., Shen, C., Sun, L., Yuan, P., He, M., & Shi, J. (2020). Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Sci

  • Pisano, R., & Durlo, A. (2023). Feynman’s Frameworks on Nanotechnology in Historiographical Debate. In Historiographies of science (pp. 1–38).

  • Rahmani, N., & Radjabian, T. (2024). Integrative effects of phytohormones in the phenolic acids production in Salvia verticillata L. under multi-walled carbon nanotubes and methyl jasmonate elicitation. BMC Plant Biology<

  • Rind, I. K., Tuzen, M., Sarı, A., Lanjwani, M. F., Memon, N., & Saleh, T. A. (2023). Synthesis of TiO2 nanoparticles loaded on magnetite nanoparticles modified kaolinite clay

  • Roberts, T. C., Langer, R., & Wood, M. J. A. (2020). Advances in oligonucleotide drug delivery. Nature Reviews. Drug Discover/Nature Reviews. Drug Discovery, 19(10), 673–694.

  • Sajid, M., & Płotka-Wasylka, J. (2020). Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154,

  • Saleh, T. A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20, 101067.

  • Santana, I., Jeon, S., Kim, H., Islam, M. R., Castillo, C., Garcia, G. F. H., Newkirk, G. M., & Giraldo, J. P. (2022). Targeted carbon nanostructures for chemical and gene del

  • Shaheen, I., Khalil, A., Shaheen, R., & Tahir, M. B. (2023). A review on nanomaterials: types, synthesis, characterization techniques, properties and applications. Innovati

  • Shen, R., Peng, Z., Zhao, L., Chen, C., Wang, H., Chen, Z., Wang, J., & Guo, T. (2023). Creation of Fragrant Rice by Targeted Editing of fgr Gene Using Magnetic Nanoparticle-mediated Pollen Magnetofection in Rice. Researc

  • Sofy, A. R., Sofy, M. R., Hmed, A. A., Dawoud, R. A., Alnaggar, A. E. M., Soliman, A. M., & El-Dougdoug, N. K. (2021). Ameliorating the Adverse Effects of Tomato mosaic tobamo

  • Paul, S. K., Sohrawardy, H., Mahmud, N. U., Roy, P. C., & Islam, T. (2022). Nanopesticides for crop protection. In Elsevier eBooks (pp. 389–438).

  • Stepchenkova, E. I., Zadorsky, S. P., Shumega, A. R., & Aksenova, A. Y. (2023). Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Internation

  • Suazo-Hernández, J., Arancibia-Miranda, N., Mlih, R., Cáceres-Jensen, L., Bolan, N., & De La Luz Mora, M. (2023). Impact on some soil physical and chemical properties caused b

  • Sufyan, M., Daraz, U., Hyder, S., Zulfiqar, U., Iqbal, R., Eldin, S. M., Rafiq, F., Mahmood, N., Shahzad, K., Uzair, M., Fiaz, S., & Ali, I. (2023). An overview of genome engi

  • Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., & Gu, Z. (2015). Self‐Assembled DNA nanoclews for the efficient delivery of CRISPR–CAS9 for genome editing. A

  • Tandon, A., Singh, A., Thakur, A., & Sharma, V. (2023). Nanomaterial mediated genome engineering for sustainable food production: Current stat

  • Tröder, S. E., & Zevnik, B. (2021). History of genome editing: From meganucleases to CRISPR. Laboratory Animals, 56(1), 60–68.

  • Ulhassan, Z., Yang, S., He, D., Khan, A. R., Salam, A., Azhar, W., Muhammad, S., Ali, S., Hamid, Y., Khan, I., Sheteiwy, M. S., & Zhou, W. (20

  • Walter, P., Welcomme, E., Hallégot, P., Zaluzec, N. J., Deeb, C., Castaing, J., Veyssière, P., Bréniaux, R., Lévêque, J., & Tsoucaris, G. (2006). Early use of PBS nanotechnology for an ancient

  • Wang, J. W., Grandio, E. G., Newkirk, G. M., Demirer, G. S., Butrus, S., Giraldo, J. P., & Landry, M. P. (2019). Nanoparticle-Mediated Genetic

  • Wang, Z., Zhang, Z., Zheng, D., Zhang, T., Li, X., Zhang, C., Yu, R., Wei, J., & Wu, Z. (2022). Efficient and genotype independent maize trans

  • Warghane, A., Saini, R., Shri, M., Andankar, I., Ghosh, D. K., & Chopade, B. A. (2024). Application of nanoparticles for management of plant viral pathogen: Current status and future prospects

  • Wu, H., Qi, J., Li, Y., Xue, Y., Li, G., Xu, W., Xie, Z., Gu, J., & Li, Z. (2024). Rational design of ROS scavenging and fluorescent gold nano

  • Yadav, S., Jat, S. K., Bhattacharya, J., & Sharma, M. K. (2023). Nanotechnology mediated gene transfer in plants: a novel approach. In Elsevier eBooks (pp. 141–168).

  • Zakaria, N. Z. J., Rozali, S., Mubarak, N. M., & Ibrahim, S. (2022). A review of the recent trend in the synthesis of carbon nanomaterials der

  • Zhang, B., Huang, S., Meng, Y., & Chen, W. (2023). Gold nanoparticles (AuNPs) can rapidly deliver artificial microRNA (AmiRNA)-ATG6 to silence

  • Zhang, H., Zhang, H., Demirer, G. S., González-Grandío, E., Fan, C., & Landry, M. P. (2020). Engineering DNA nanostructures for siRNA delivery

  • Zhang, L., Chen, L., Liu, J., Fang, X., & Zhang, Z. (2016). Effect of morphology of carbon nanomaterials on thermo-physical characteristics, optical properties and photo-thermal conversion per

  • Zhang, L., Wang, P., Feng, Q., Wang, N., Chen, Z., Huang, Y., Zheng, W., & Jiang, X. (2017). Lipid nanoparticle-mediated efficient delivery of

  • Zhao, X., Meng, Z., Wang, Y., Chen, W., Sun, C., Cui, B., Cui, J., Yu, M., Zeng, Z., Guo, S., Luo, D., Cheng, J. Q., Zhang, R., & Cui, H. (201

  • Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 3(4), 95–102.

  • Zuo, Y., Zeng, W., & Huang, J. (2023). Effects of exposure to carbon nanomaterials on soil microbial communities: A

Cite this article

    APA : Iqbal, N., Akbar, B. A., & Taskeen, N. (2024). Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications. Global Immunological & Infectious Diseases Review, IX(I), 34-53. https://doi.org/10.31703/giidr.2024(IX-I).05
    CHICAGO : Iqbal, Nadia, Babur Ali Akbar, and Nayab Taskeen. 2024. "Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications." Global Immunological & Infectious Diseases Review, IX (I): 34-53 doi: 10.31703/giidr.2024(IX-I).05
    HARVARD : IQBAL, N., AKBAR, B. A. & TASKEEN, N. 2024. Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications. Global Immunological & Infectious Diseases Review, IX, 34-53.
    MHRA : Iqbal, Nadia, Babur Ali Akbar, and Nayab Taskeen. 2024. "Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications." Global Immunological & Infectious Diseases Review, IX: 34-53
    MLA : Iqbal, Nadia, Babur Ali Akbar, and Nayab Taskeen. "Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications." Global Immunological & Infectious Diseases Review, IX.I (2024): 34-53 Print.
    OXFORD : Iqbal, Nadia, Akbar, Babur Ali, and Taskeen, Nayab (2024), "Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications", Global Immunological & Infectious Diseases Review, IX (I), 34-53
    TURABIAN : Iqbal, Nadia, Babur Ali Akbar, and Nayab Taskeen. "Nanoparticles Mediated Plant Genetic Engineering: Emerging Field with Promising Applications." Global Immunological & Infectious Diseases Review IX, no. I (2024): 34-53. https://doi.org/10.31703/giidr.2024(IX-I).05