ARTICLE

AN INSIGHT OF MECHANISM OF ACTION OF FOUR ANTICANCER DRUGS

04 Pages : 41-48

http://dx.doi.org/10.31703/giidr.2017(II-I).04      10.31703/giidr.2017(II-I).04      Published : Dec 2017

An Insight of Mechanism of Action of Four Anti-Cancer Drugs

    Cancer being a multifarious disease, can be mutated in many ways so that it can enhance the process of proliferation, invasion through an overactive cellular cycle and cell division and by antibacterial and chemotherapeutic drugs is highly guaranteed. The cells can prevent the development of apoptosis by the absence of (TP53) protein i-e tumor suppressor gene, in the necrosis, inflammatory signals especially that invade immune cells, which promote invasion and malignancy. Cancer cells can form their own factors and growth ligands which may include the peptides such as Bombesin (secreted by the small cells in lung cancer). It activates both the invasion and the metastasis by forming changes in shape and attachment to the outer matrix of neighboring cell. The paper presents classes of anti-mitotic compounds, the overview of the molecular mechanism of action of anti-mitotic agents, including Bevacizumab, trastuzumab, Mechlorethamine and paclitaxel, and a demonstration of many other anti-mitotic chemical limitations.

    Cancer, Chemotherapeutic Drugs, Apoptosis, Tumor Suppressor Gene, Invasion, Metastasis
    (1) Gul Shehnaz
    Chairperson, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.(Corresponding Author)
    (2) Sana Ali Zahra
    Undergrad Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
    (3) Syeda Komal Fatima
    Undergrad Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
  • Bahreyni, A., Mohamud, Y., & Luo, H. J. J. o. N. (2020). Emerging nanomedicines for effective breast cancer immunotherapy. 18(1), 1-14.
  • Ciruelos, E., Villagrasa, P., Pascual, T., Oliveira, M., Pernas, S., Paré, L., . . . Martínez, E. J. C. C. R. (2020). Palbociclib and trastuzumab in HER2-positive advanced breast cancer: Results from the phase II SOLTI-1303 PATRICIA trial. 26(22), 5820-5829.
  • Cremolini, C., Antoniotti, C., Stein, A., Bendell, J., Gruenberger, T., Rossini, D., . . . Falcone, A. J. J. o. C. O. (2020). Individual patient data meta-analysis of FOLFOXIRI plus Bevacizumab versus doublets plus Bevacizumab as initial therapy of unresectable metastatic colorectal cancer. 38(28), 3314-3324.
  • Dale, M. M., & Haylett, D. G. (2013). Rang & Dale's Pharmacology Flash Cards Updated Edition E-Book: Elsevier Health Sciences.
  • Derakhshani, A., Rezaei, Z., Safarpour, H., Sabri, M., Mir, A., Sanati, M. A., Hajiasgharzadeh, K. J. J. o. c. p. (2020). Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. 235(4), 3142- 3156.
  • Dubey, A., Uddin, R. J. J. o. P., & Sciences, B. (2020). Different types of hepatotoxicities induced by drugs. 8(1), 7-11.
  • Finn, R. S., Qin, S., Ikeda, M., Galle, P. R., Ducreux, M., Kim, T.-Y., Kaseb, A. O. J. N. E. J. o. M. (2020). Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma. 382(20), 1894-1905.
  • Gemmete, J., & Mukherji, S. J. A. j. o. n. (2011). Trastuzumab (herceptin). 32(8), 1373- 1374.
  • Gerstner, E. R., Emblem, K. E., Chang, K., Vakulenko- Lagun, B., Yen, Y.-F., Beers, A. L., Hooker, J. M. J. C. C. R. (2020). Bevacizumab reduces permeability and concurrent temozolomide delivery in a subset of patients with recurrent glioblastoma. 26(1), 206-212.
  • Hunter, F. W., Barker, H. R., Lipert, B., Rothé, F., Gebhart, G., Piccart-Gebhart, M. J., . . . Jamieson, S. M. J. B. j. o. c. (2020). Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. 122(5), 603-612.
  • Kamata, T., & Pritchard, C. J. A. j. o. c. r. (2011). Mechanisms of aneuploidy induction by RAS and RAF oncogenes. 1(7), 955.
  • Kampan, N. C., Madondo, M. T., McNally, O. M., Quinn, M., & Plebanski, M. J. B. r. i. (2015). Paclitaxel and its evolving role in the management of ovarian cancer. 2015.
  • Kobayashi, N., Hashimoto, H., Kamimaki, C., Nagasawa, R., Tanaka, K., Kubo, S., Ushio, R. J. T. C. (2020). Afatinib bevacizumab combination therapy in EGFR-mutant NSCLC patients with osimertinib resistance: Protocol of an open-label, phase II, multicenter, single-arm trial. 11(8), 2125-2129.
  • Martinez-Cardús, A., Vizoso, M., Moran, S., & Manzano, J. L. J. A. O. T. M. (2015). Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. 3(15).
  • Murthy, R. K., Loi, S., Okines, A., Paplomata, E., Hamilton, E., Hurvitz, S. A., & Anders, C. J. N. E. J. o. M. (2020). Tucatinib, trastuzumab, and capecitabine for HER2- positive metastatic breast cancer. 382(7), 597-609.
  • National Institute of Cancer (NIC). (n.d.). Cancer. https://www.cancer.gov/publications/dicti onaries/cancer-terms/def/cancer
  • Seystahl, K., Hentschel, B., Loew, S., Gramatzki, D., Felsberg, J., Herrlinger, U., oncology, c. (2020). Bevacizumab versus alkylating chemotherapy in recurrent glioblastoma. 146(3), 659-670.
  • Whalen, K. (2018). Lippincott® Illustrated Reviews: Pharmacology: Wolters kluwer india Pvt Ltd.
  • Yovinska, M., Kaneva, R., & Dimova, I. J. E. J. O. H. G. (2020). Conference: Interactive e-Posters. 28, 141-797.
  • Zarrabeitia, R., Albinana, V., Salcedo, M., Senaris- Gonzalez, B., Fernandez-Forcelledo, J.-L., & Botella, L.-M. J. C. V. P. (2010). A review on clinical management and pharmacological therapy on hereditary haemorrhagic telangiectasia (HHT). 8(4), 473-481.
  • Zhou, Q., Perakis, S. O., Ulz, P., Mohan, S., Riedl, J. M., Talakic, E., Bauernhofer, T. J. G. M. (2020). Cell-free DNA analysis reveals POLR1D-mediated resistance to Bevacizumab in colorectal cancer. 12(1), 1- 17.

Cite this article

    APA : Shehnaz, G., Zahra, S. A., & Fatima, S. K. (2017). An Insight of Mechanism of Action of Four Anti-Cancer Drugs. Global Immunological & Infectious Diseases Review, II(I), 41-48. https://doi.org/10.31703/giidr.2017(II-I).04
    CHICAGO : Shehnaz, Gul, Sana Ali Zahra, and Syeda Komal Fatima. 2017. "An Insight of Mechanism of Action of Four Anti-Cancer Drugs." Global Immunological & Infectious Diseases Review, II (I): 41-48 doi: 10.31703/giidr.2017(II-I).04
    HARVARD : SHEHNAZ, G., ZAHRA, S. A. & FATIMA, S. K. 2017. An Insight of Mechanism of Action of Four Anti-Cancer Drugs. Global Immunological & Infectious Diseases Review, II, 41-48.
    MHRA : Shehnaz, Gul, Sana Ali Zahra, and Syeda Komal Fatima. 2017. "An Insight of Mechanism of Action of Four Anti-Cancer Drugs." Global Immunological & Infectious Diseases Review, II: 41-48
    MLA : Shehnaz, Gul, Sana Ali Zahra, and Syeda Komal Fatima. "An Insight of Mechanism of Action of Four Anti-Cancer Drugs." Global Immunological & Infectious Diseases Review, II.I (2017): 41-48 Print.
    OXFORD : Shehnaz, Gul, Zahra, Sana Ali, and Fatima, Syeda Komal (2017), "An Insight of Mechanism of Action of Four Anti-Cancer Drugs", Global Immunological & Infectious Diseases Review, II (I), 41-48
    TURABIAN : Shehnaz, Gul, Sana Ali Zahra, and Syeda Komal Fatima. "An Insight of Mechanism of Action of Four Anti-Cancer Drugs." Global Immunological & Infectious Diseases Review II, no. I (2017): 41-48. https://doi.org/10.31703/giidr.2017(II-I).04