Advancement in Immunotherapy for Cancer Cells
Immunotherapy has always been scrutinized to its extent when it comes to having a promising cure for cancer. Advancement in this field is ever growing with the new immunomodulatory agents being discovered or modified along with their complete characterization extracted from plants and fungi as well. Due to the lack of complete understanding of either the structure or the mechanism by which they work, very few of them pass the clinical trial phases and reach the market. Nevertheless, scientists have not stopped working on understanding the tumor behavior and various immune responses related to it to come up with therapeutically potential immunomodulatory agents. Current agents are also being used in combination with other therapies to enhance the anti-tumour effect and to achieve better efficacy in the treatment. The intricate connection of immune responses and tumor behavior surely intrigues the scientists, which paves the way for better agents being poured Cancer Immunotherapy.
-
Immunotherapy, Cancer, Immune Response, Immunomodulatory Agents, Combination Therapy
-
(1) Tehreem Haider
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
(2) Syed Faeez ul Hassan Naqvi
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
(3) Mahnoor Nadeem
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
(4) Gul Shehnaz
Chairperson, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.(Corresponding Author)
- Adams, S., Gatti-Mays, M. E., Kalinsky, K., Korde, L. A., Sharon, E., Amiri-Kordestani, L., . . . Mittendorf, E. A. (2019). Current Landscape of Immunotherapy in Breast Cancer: A Review. JAMA Oncology, 5(8), 1205-1214. doi:10.1001/jamaoncol.2018. 7147 J JAMA Oncology
- Amagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A., & Crews, P. (2003). Structures and Cytotoxic Properties of Trichoverroids and Their Macrolide Analogues Produced by Saltwater Culture of Myrothecium verrucaria. Journal of Medicinal Chemistry, 46(20), 4342-4350. doi:10.1021/jm030090t
- Aricò, E., Castiello, L., Capone, I., Gabriele, L., & Belardelli, F. J. C. (2019). Type I interferons and cancer: An evolving story demanding novel clinical applications. 11(12), 1943.
- Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.-J., . . . Palucka, K. (2000). Immunobiology of Dendritic Cells. 18(1), 767-811. doi:10.1146/annurev. immunol.18.1.767
- Bondy, G. S., Pestka, J. J. J. J. o. T., & Reviews, E. H. P. B. C. (2000). Immunomodulation by fungal toxins. 3(2), 109-143.
- Chang, L.-S., Barroso-Sousa, R., Tolaney, S. M., Hodi, F. S., Kaiser, U. B., & Min, L. J. E. r. (2019). Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. 40(1), 17-65.
- Chen, Daniel S., & Mellman, I. (2013). Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39(1), 1-10.
- Clevers, H., & Nusse, R. (2012). Wnt/β-Catenin Signaling and Disease. Cell, 149(6), 1192- 1205.
- Corrales, L., Matson, V., Flood, B., Spranger, S., & Gajewski, T. F. J. C. r. (2017). Innate immune signaling and regulation in cancer immunotherapy. 27(1), 96-108.
- Cruciat, C.-M., & Niehrs, C. (2013). Secreted and Transmembrane Wnt Inhibitors and Activators. 5(3). doi:10.1101/cshperspect.a015081
- Davis-Dusenbery, B. N., & Hata, A. (2010). Mechanisms of control of microRNA biogenesis. The Journal of Biochemistry, 148(4), 381-392. doi:10.1093/jb/mvq096 J the Journal of Biochemistry
- Dine, J., Gordon, R., Shames, Y., Kasler, M. K., & Barton-Burke, M. (2017). Immune Checkpoint Inhibitors: An Innovation in Immunotherapy for the Treatment and Management of Patients with Cancer. Asia- Pacific journal of oncology nursing, 4(2), 127-135. doi:10.4103/apjon.apjon_4_17
- Donaldson, B., Al-Barwani, F., Pelham, S. J., Young, K., Ward, V. K., & Young, S. L. J. J. f. i. o. c. (2017). Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. 5(1), 69.
- Esposito, A., Viale, G., & Curigliano, G. J. J. o. (2019). Safety, tolerability, and management of toxic effects of phosphatidylinositol 3- kinase inhibitor treatment in patients with cancer: a review. 5(9), 1347-1354.
- Feins, S., Kong, W., Williams, E. F., Milone, M. C., & Fraietta, J. A. J. A. J. o. H. (2019). An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. 94(S1), S3-S9.
- Focaccetti, C., Izzi, V., Benvenuto, M., Fazi, S., Ciuffa, S., Giganti, M. G., . . . Bei, R. J. I. j. o. m. s. (2019). Polyphenols as immunomodulatory compounds in the tumor microenvironment: friends or foes? , 20(7), 1714.
- Fu, Y., Li, F., Zhang, P., Liu, M., Qian, L., Lv, F., . . . Hou, R. (2019). Myrothecine A modulates the proliferation of HCC cells and the maturation of dendritic cells through downregulating miR-221. International Immunopharmacology, 75, 105783.
- Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G., & Jain, R. K. J. N. r. C. o. (2018). Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. 15(5), 325.
- Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G. V., Ciafrè, S. A., & Farace, M. G. (2007). miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1. 282(32), 23716- 23724. doi:10.1074/jbc.M701805200
- Goldsberry, W. N., Londoño, A., Randall, T. D., Norian, L. A., & Arend, R. C. (2019). A Review of the Role of Wnt in Cancer mmunomodulation. Cancers (Basel), 11(6). doi:10.3390/cancers11060771
- Goldsberry, W. N., Londoño, A., Randall, T. D., Norian, L. A., & Arend, R. C. J. C. (2019). A review of the role of Wnt in cancer immunomodulation. 11(6), 771.
- Gomez-Cadena, A., Urueña, C., Prieto, K., Martinez- Usatorre, A., Donda, A., Barreto, A., . . . disease. (2016). Immune-system- dependent anti-tumor activity of a plant- derived polyphenol rich fraction in a melanoma mouse model. 7(6), e2243- e2243.
- Green, D. S., Nunes, A. T., David-Ocampo, V., Ekwede, I. B., Houston, N. D., Highfill, S. L., . . . Zoon, K. C. J. J. o. t. m. (2018). A Phase 1 trial of autologous monocytes stimulated ex vivo with Sylatron®(Peginterferon alfa- 2b) and Actimmune®(Interferon gamma-1b) for intra-peritoneal administration in recurrent ovarian cancer. 16(1), 196.
- Hafeez, U., Gan, H. K., & Scott, A. M. J. C. o. i. p. (2018). Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. 41, 114-121.
- Hanahan, D., & Weinberg, Robert A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674.
- Hao, H.-X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., . . . Cong, F. (2012). ZNRF3 promotes Wnt receptor turnover in an R- spondin-sensitive manner. Nature, 485(7397), 195-200. doi:10.1038/nature11019
- Hu, Z., Ott, P. A., & Wu, C. J. J. N. R. I. (2018). Towards personalized, tumour-specific, therapeutic vaccines for cancer. 18(3), 168.
- June, C. H., O'Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. J. S. (2018). CAR T cell immunotherapy for human cancer. 359(6382), 1361-1365.
- Kagey, M. H., & He, X. (2017). Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. 174(24), 4637-4650.
- Kang, J., Demaria, S., & Formenti, S. J. J. f. i. o. c. (2016). Current clinical trials testing the combination of immunotherapy with radiotherapy. 4(1), 51.
- Kao, D., Flores-Bocanegra, L., Raja, H. A., Darveaux, B. A., Pearce, C. J., & Oberlies, N. H. (2020). New tricks for old dogs: Two new macrocyclic trichothecene epimers and absolute configuration of 16- hydroxyverrucarin B. Phytochemistry, 172, 112238.
- Kennedy, L. B., & Salama, A. K. J. C. a. c. j. f. c. (2020). A review of cancer immunotherapy toxicity. 70(2), 86-104.
- Kruger, S., Ilmer, M., Kobold, S., Cadilha, B. L., Endres, S., Ormanns, S., . . . Research, C. C. (2019). Advances in cancer immunotherapy 2019-latest trends. 38(1), 1-11.
- Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., . . . Holstein, T. W. (2005). Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433(7022), 156-160. doi:10.1038/nature03158
- Lapeyre-Prost, A., Terme, M., Pernot, S., Pointet, A.- L., Voron, T., Tartour, E., & Taieb, J. (2017). Immunomodulatory activity of VEGF in cancer. In International review of cell and molecular biology (Vol. 330, pp. 295-342): Elsevier.
- Liu, H.-X., Liu, W.-Z., Chen, Y.-C., Sun, Z.-H., Tan, Y.-Z., Li, H.-H., & Zhang, W.-M. (2016). Cytotoxic trichothecene macrolides from the endophyte fungus Myrothecium roridum. Journal of Asian Natural Products Research, 18(7), 684-689. doi:10.1080/10286020.2015.1134505
- Lohmueller, J., Finn, O. J. J. P., & therapeutics. (2017). Current modalities in cancer immunotherapy: immunomodulatory antibodies, CARs and vaccines. 178, 31-47.
- Mileo, A. M., Di Venere, D., Mardente, S., & Miccadei, S. (2020). Artichoke Polyphenols Sensitize Human Breast Cancer Cells to Chemotherapeutic Drugs via a ROS- Mediated Downregulation of Flap Endonuclease 1. Oxidative Medicine and Cellular Longevity, 2020, 7965435. doi:10.1155/2020/7965435
- Mileo, A. M., Nisticò, P., & Miccadei, S. J. F. i. i. (2019). Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. 10, 729.
- Mullard, A. (2013). New checkpoint inhibitors ride the immunotherapy tsunami. Nature Reviews Drug Discovery, 12(7), 489-492. doi:10.1038/nrd4066
- Neufeld, G., Cohen, T., Gengrinovitch, S., & Poltorak, Z. J. T. F. j. (1999). Vascular endothelial growth factor (VEGF) and its receptors. 13(1), 9-22.
- Okazaki, T., & Honjo, T. (2007). PD-1 and PD-1 ligands: from discovery to clinical application. International Immunology, 19(7), 813-824. doi:10.1093/intimm/dxm057 International Immunology
- Puzanov, I., Diab, A., Abdallah, K., Bingham, C., Brogdon, C., Dadu, R., . . . LeBoeuf, N. J. J. f. i. o. c. (2017). Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. 5(1), 1-28.
- Rashdan, S., Minna, J. D., & Gerber, D. E. J. T. L. R. M. (2018). Diagnosis and management of pulmonary toxicity associated with cancer immunotherapy. 6(6), 472-478.
- Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A., & Lambris, J. D. J. N. R. I. (2018). Complement in cancer: untangling an intricate relationship. 18(1), 5.
- Riley, R. S., June, C. H., Langer, R., & Mitchell, M. J. J. N. r. D. d. (2019). Delivery technologies for cancer immunotherapy. 18(3), 175-196.
- Rios-Esteves, J., & Resh, Marilyn D. (2013). Stearoyl CoA Desaturase Is Required to Produce Active, Lipid-Modified Wnt Proteins. Cell Reports, 4(6), 1072-1081.
- Rosa, V., Lucia, R., Pierlorenzo, P., Ivana De, M., Angelo, F., Vincenza, L., . . . Alfredo, F. (2007). MicroRNAs (miR)-221 and miR- 222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine- Related Cancer Endocr Relat Cancer, 14(3), 791-798. doi:10.1677/ERC-07-0129
- Shan, X., Li, S., Sun, B., Chen, Q., Sun, J., He, Z., & Luo, C. J. J. o. C. R. (2020). Ferroptosis- driven nanotherapeutics for cancer treatment. 319, 322-332.
- Sharpe, A. H. J. I. r. (2017). Introduction to checkpoint inhibitors and cancer immunotherapy. 276(1), 5.
- Steinman, R. M. (1991). The Dendritic Cell System and its Role in Immunogenicity. 9(1), 271- 296. doi:10.1146/annurev.iy.09.040191.00141 5
- Suresh, K., Naidoo, J., Lin, C. T., & Danoff, S. J. C. (2018). Immune checkpoint immunotherapy for non-small cell lung cancer: benefits and pulmonary toxicities. 154(6), 1416-1423.
- Wang, B. X., & Fish, E. N. (2019). Global virus outbreaks: Interferons as 1st responders. Paper presented at the Seminars in immunology.
- Wang, Y., Deng, W., Li, N., Neri, S., Sharma, A., Jiang, W., & Lin, S. H. J. F. i. p. (2018). Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. 9, 185.
- Wilky, B. A. (2019). Immune checkpoint inhibitors: The linchpins of modern immunotherapy. 290(1), 6-23.
- Wirsdörfer, F., De Leve, S., & Jendrossek, V. J. I. J. o. M. S. (2019). Combining radiotherapy and immunotherapy in lung cancer: can we expect limitations due to altered normal tissue toxicity? 20(1), 24.
- Wu, Q., Wang, X., Nepovimova, E., Miron, A., Liu, Q., Wang, Y., . . . Kuca, K. (2017). Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Archives of Toxicology, 91(12), 3737-3785. doi:10.1007/s00204-017- 2118-3
- Xu, Z., Zhen, B., Park, Y., & Zhu, B. J. S. i. m. (2017). Designing therapeutic cancer vaccine trials with delayed treatment effect. 36(4), 592- 605.
- Yamashita, R., Sato, M., Kakumu, T., Hase, T., Yogo, N., Maruyama, E., . . . Hasegawa, Y. (2015). Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells. 4(4), 551-564.
- Zahavi, D., & Weiner, L. J. A. (2020). Monoclonal antibodies in cancer therapy. 9(3), 34.
- Zhang, R., Billingsley, M. M., & Mitchell, M. J. J. J. o. C. R. (2018). Biomaterials for vaccine- based cancer immunotherapy. 292, 256- 276.
Cite this article
-
APA : Haider, T., Naqvi, S. F. u. H., & Nadeem, M. (2016). Advancement in Immunotherapy for Cancer Cells. Global Immunological & Infectious Diseases Review, I(I), 51-62. https://doi.org/10.31703/giidr.2016(I-I).05
-
CHICAGO : Haider, Tehreem, Syed Faeez ul Hassan Naqvi, and Mahnoor Nadeem. 2016. "Advancement in Immunotherapy for Cancer Cells." Global Immunological & Infectious Diseases Review, I (I): 51-62 doi: 10.31703/giidr.2016(I-I).05
-
HARVARD : HAIDER, T., NAQVI, S. F. U. H. & NADEEM, M. 2016. Advancement in Immunotherapy for Cancer Cells. Global Immunological & Infectious Diseases Review, I, 51-62.
-
MHRA : Haider, Tehreem, Syed Faeez ul Hassan Naqvi, and Mahnoor Nadeem. 2016. "Advancement in Immunotherapy for Cancer Cells." Global Immunological & Infectious Diseases Review, I: 51-62
-
MLA : Haider, Tehreem, Syed Faeez ul Hassan Naqvi, and Mahnoor Nadeem. "Advancement in Immunotherapy for Cancer Cells." Global Immunological & Infectious Diseases Review, I.I (2016): 51-62 Print.
-
OXFORD : Haider, Tehreem, Naqvi, Syed Faeez ul Hassan, and Nadeem, Mahnoor (2016), "Advancement in Immunotherapy for Cancer Cells", Global Immunological & Infectious Diseases Review, I (I), 51-62
-
TURABIAN : Haider, Tehreem, Syed Faeez ul Hassan Naqvi, and Mahnoor Nadeem. "Advancement in Immunotherapy for Cancer Cells." Global Immunological & Infectious Diseases Review I, no. I (2016): 51-62. https://doi.org/10.31703/giidr.2016(I-I).05