References
- Adalja, A., & Inglesby, T. (2019). Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool. Expert Review of Anti-Infective Therapy, 17(7), 467-470
- Alexaki, A., Liu, Y., & Wigdahl, B. (2008). Cellular Reservoirs of HIV-1 and their Role in Viral Persistence. Current HIV Research, 6(5), 388-400.
- Amidon, G., Lennernäs, H., Shah, V., & Crison, J. (1995). Journal search results - Cite This for Me. Pharmaceutical Research, 12(3), 413- 420
- Arshady, R., & Kono, K. (Eds.). (2006). Smart nano- particles in nano-medicine. Kentus
- Baram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., & Sarid, R. (2009). Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate. Bioconjugate Chemistry, 20(8), 1497-1502
- Baron, B., Baron, R., & Baron, J. (2015). Repression of the Pontin (RUVBL1, TIP49) Gene by BCL6: Implications for the Pathogenesis of Human B and T Cell Lymphomas. Blood, 126(23), 4821-4821
- Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nano-technology in combating infectious disease. Virulence, 2(5), 395-40
- Bule, M., Khan, F., & Niaz, K. (2019). Antivirals: Past, Present and Future. In Recent Advances in Animal Virology (pp. 425-446). Springer, Singapore
- Chan, L., Lowes, S., & Hirst, B. (2004). The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. European Journal of Pharmaceutical Sciences, 21(1), 25-51
- Chaudhuri, A., & Kennedy, P. G. E. (2002). Diagnosis and treatment of viral encephalitis. Postgraduate medical journal, 78(924), 575-583
- Cojocaru, F., Botezat, D., Gardikiotis, I., Uritu, C., Dodi, G., & Trandafir, L. et al. (2020). Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics, 12(2), 171
- DeVincenzo, J., Whitley, R., Mackman, R., Scaglioni- Weinlich, C., Harrison, L., & Farrell, E. et al. (2014). Oral GS-5806 Activity in a Respiratory Syncytial Virus Challenge Study. New England Journal of Medicine, 371(8), 711-722.
- Gerber, J. (2000). Using Pharmacokinetics to Optimize Antiretroviral Drug-Drug Interactions in the Treatment of Human Immunodeficiency Virus Infection. Clinical Infectious Diseases, 30(Supplement_2), S123-S129
- Henahan, S. (1998). Fomivirsen focuses on the future in CMV retinitis. Inpharma Weekly, &NA;(1138), 11-12.
- Hillaireau, H., & Couvreur, P. (2009). Nano-carriers' entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences, 66(17), 2873-2896
- Ketzinel-Gilad, M., Shaul, Y., & Galun, E. (2006). RNA interference for antiviral therapy. The Journal of Gene Medicine, 8(8), 933-950
- Lara, H., Garza-Treviño, E., Ixtepan-Turrent, L., & Singh, D. (2011). Silver nano-particles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology, 9(1), 30.
- Liaw, Y. (2005). The current management of HBV drug resistance. Journal of Clinical Virology, 34, S143-S146
- Mao, J., Wang, J., Chinchar, G., & Chinchar, V. (1999). Molecular characterization of a ranavirus isolated from largemouth bass Micropterus salmoides. Diseases of Aquatic Organisms, 37, 107-114
- Milroy, D., & Featherstone, J. (2002). Antiviral market overview. Nature Reviews Drug Discovery, 1(1), 11-12
- Mishra, B., Patel, B., & Tiwari, S. (2010). Colloidal nano-carriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nano-technology, Biology and Medicine, 6(1), 9-24.
- Ocadiz-Delgado, R., Albino-Sanchez, M., Garcia- Villa, E., Aguilar-Gonzalez, M., Cabello, C., & Rosete, D. et al. (2013). In situ molecular identification of the Influenza A (H1N1) 2009 Neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City. BMC Infectious Diseases, 13(1).
- Oshikoya, K., Ogunleye, Lawal, Senbanjo, S., & Oreagba. (2013). Clinically significant interactions between anti-retroviral and co-prescribed drugs for HIV-infected children: profiling and comparison of two drug databases. Therapeutics and Clinical Risk Management, 215
- Riehemann, K., Schneider, S., Luger, T., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine-Challenge and Perspectives. Angewandte Chemie International Edition, 48(5), 872-897.
- Rouse, B., & Sehrawat, S. (2010). Immunity and immunopathology to viruses: what decides the outcome Nature Reviews Immunology, 10(7), 514-526
- Strasfeld, L., & Chou, S. (2010). Antiviral Drug Resistance: Mechanisms and Clinical Implications. Infectious Disease Clinics of North America, 24(2), 413-437
- Singh, R., & Lillard, J. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215-223.
- Sharma, P., & Garg, S. (2010). Pure drug and polymer based nano-technologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Advanced Drug Delivery Reviews, 62(4-5), 491-502.
- Sosnik, A., & Amiji, M. (2010). Nano-technology solutions for infectious diseases in developing nations. Advanced Drug Delivery Reviews, 62(4-5), 375-377
- Torchilin, V. (2009). Multifunctional and stimuli sensitive pharmaceutical nano- carriers. European Journal of Pharmaceutics and Biopharmaceutics, 71(3), 431-444
- Torchilin, V. (2009). Multifunctional and stimuli- sensitive pharmaceutical nano- carriers. European Journal of Pharmaceutics and Biopharmaceutics, 71(3), 431-444.
- Vyas, S., Subhedar, R., & Jain, S. (2006). Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. Journal of Pharmacy and Pharmacology, 58(3), 321-326.
- Villanueva-Flores, F., Castro-Lugo, A., RamÃÂrez, O., & Palomares, L. (2020). Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nano-technology, 31(13), 132002
- Williams, G., & Sinko, P. (1999). Oral absorption of the HIV protease inhibitors: a current update. Advanced Drug Delivery Reviews, 39(1-3), 211-238
- Wong, H., Chattopadhyay, N., Wu, X., & Bendayan, R. (2010). Nano-technology applications for improved delivery of anti-retroviral drugs to the brain. Advanced Drug Delivery Reviews, 62(4-5), 503-517
- Tiemann, K., & Rossi, J. (2009). RNAi-based therapeutics-current status, challenges and prospects. EMBO Molecular Medicine, 1(3), 142-151. doi: 10.1002/emmm.200900023
Cite this article
-
APA : Rehman, M., Abdullah., & Gul, H. (2016). Nano-Technological Approach towards Anti-Viral Therapy. Global Immunological & Infectious Diseases Review, I(I), 12-20. https://doi.org/10.31703/giidr.2016(I-I).02
-
CHICAGO : Rehman, Mubashar, Abdullah, and Hassan Gul. 2016. "Nano-Technological Approach towards Anti-Viral Therapy." Global Immunological & Infectious Diseases Review, I (I): 12-20 doi: 10.31703/giidr.2016(I-I).02
-
HARVARD : REHMAN, M., ABDULLAH. & GUL, H. 2016. Nano-Technological Approach towards Anti-Viral Therapy. Global Immunological & Infectious Diseases Review, I, 12-20.
-
MHRA : Rehman, Mubashar, Abdullah, and Hassan Gul. 2016. "Nano-Technological Approach towards Anti-Viral Therapy." Global Immunological & Infectious Diseases Review, I: 12-20
-
MLA : Rehman, Mubashar, Abdullah, and Hassan Gul. "Nano-Technological Approach towards Anti-Viral Therapy." Global Immunological & Infectious Diseases Review, I.I (2016): 12-20 Print.
-
OXFORD : Rehman, Mubashar, Abdullah, , and Gul, Hassan (2016), "Nano-Technological Approach towards Anti-Viral Therapy", Global Immunological & Infectious Diseases Review, I (I), 12-20
-
TURABIAN : Rehman, Mubashar, Abdullah, and Hassan Gul. "Nano-Technological Approach towards Anti-Viral Therapy." Global Immunological & Infectious Diseases Review I, no. I (2016): 12-20. https://doi.org/10.31703/giidr.2016(I-I).02