02 Pages : 9-27
Abstract
Anti-microbial treatment is extensively used in conventional tuberculosis treatment, leading to resistance development. In this review, we summarized the mode of action and susceptibility protocols of anti-Tubercular drugs. An effort to elucidate the role of genetic variations, cell membrane adaptions, and efflux pump modalities in treatment failure will be an asset in devising prospective strategies.
Key Words:
Tuberculosis, Drug resistance, Mechanism of Action, Mutations
Introduction
Despite being a preventable and curable disease, TB remains on top of the infectious killing disease, claiming 1.5 million lives every year. Young people between the ages of 15-34 are carrying the heaviest burden of this disease. Tuberculosis is the principal reason for anti-microbial resistance and fatalities among people suffering from HIV. In 2020, WHO reveals the 30% global decline in deaths caused by Tuberculosis, which shifts its place from 7th to 13th in 2019. But still, this communicable disease is a major challenge in developing countries. Several treatment regimens have been implicated against Tuberculosis and MDRTB. XDRTB is treated with repurposed drugs like Phenothiazines and Novel drugs, including Bedaquiline, Delamanid, or Pretomanid. Mainly genetic mutation confers to resistance and now has also been shown by Novel drugs, indicating an alarming situation that needs utmost attention.
First-Line Drug Resistance Isoniazid
Isoniazid (INH) was presented in 1952 (Johnnson et al., 1997) and is deemed to be one of the potent prodrugs (Zhang and Yew, 2009) that exist as first-line antibiotics (Raghunandanan et al., 2018). It is triggered by the catalase/peroxidase katG enzyme (Boellela et al., 2016) and becomes a robust bacteriostatic agent (Kendler et al., 2018) against Mycobacterium Tuberculosis (Mtb) (Lentz et al., 2018). It produces its activity by impeding mycolic acid production in the bacterial outer membrane while obstructing reductase enzymes, which is encoded by inhA (Rawat et al., 2003) and has MIC of [0.02microg/ml to 0.06microg/ml] (Lempens et al., 2018).
The missense, mutation, implantation, redundancy, or even complete omission of genes (Vilcheze and Jacobs, 2007) can originate in ndh, kasA, katG, along with ahpC and inhA (Almeida and Palomino, 2011; Larsen et al., 2002). As previously discussed, it most frequently happens in S315T of katG, evolving substantial decrease or permanent failure of catalase/peroxidase function (Zhang et al., 1992). Structural reforms of the active domain and genetic variation in 215CT promoter region emerges in inhA (Leung et al., 2006), whereas hyper-expression of ahpC (Sherman et al., 1996) and silent genetic changes of mabAg609a (Ando et al., 2014) confers to resistance (Seifert et al., 2015). 64% katG S315T mutation have a significant decrease in susceptibility with MIC >1microgram/ml, while 19 % mutation in inhA promoter has mild resistance with MIC < 1microgram/ml (Riviere et al., 2020; Ayanwale et al., 2020). Scientific investigations have revealed a 2-fold increase in resistance by inhibition of dihydrofolate reductase in Mtb due to the INH-NADP 4R isomer (Wang et al., 2010).
Rifampicin
Rifampicin, amongst the broad-spectrum antibiotics, is used against bacterial pathogens (Sensi et al., 1960). Rifampicin, possessing exceptional sterilizing activity (Rattan and Musser, 1998). RIF adheres to RNA polymerase enzyme, in turn, hinders mRNA production resulting in organism destruction.
Resistance in rifampicin is correlated with a minimum of 10 genetic mutations (Sensi, 1983). The amino acid substitution in the rpoB gene is the major cause of resistance of RIF (Herrera et al., 2003). The 51 bp RRDR of the rpoB gene mainly contributes to mutations in codon 516, 526, and 531 (Ramaswamy, 1998; Herrera, 2003). Non-compliance drug resistance occurs. The modifications in several codons contribute to minor drug resistance (Heil and Zillig, 1970). Primary codon positions include 511,516 along with 518. Various factors not limited to age, HIV infection prevalence, and geography may also account for resistance. Despite the rare occurrence of RIF resistance, studies have deduced concomitant resistance in RIF and isoniazid (Cohn et al, 1997).
Ethambutol
Introduced in the 1960s (Lee and Neguyen, 2020), Ethambutol (EMB) is a first-Line Drug (Sreevatsan et al., 1997) with bacteriostatic action (Thomas et al., 1961), prescribed for the treatment of Tuberculosis since 1966 (Goude, 2009), only effective D-form (Lee and Neguyen, 2020). EMB is not given on its own, but in Quadruple following combinational therapy (Jeong et al., 2015) generating its effect by more than just interfering with the core polymer, Arabinogalactan AG (Takayama and Kilburn, 1989), but also hindering the synthesis of lipoarabinomannan LAM of the Mycobacterium cell wall (Dengg et al., 1995). Scholars demonstrated enhanced action of INH when it binds to transcriptional regulator TerR (Zhy, 2018).
Almost 4% of the clinical isolates displayed resistance (Wright and Zignol, 2008) mainly driven by genetic substitution in Rv3806c and Rv3792 (pathway genes), decaprenylphosphoryl-B-D-arabinose (DPA) (Safi et al., 2013), arabinosyl transferase emb operon counting embB codon 289, 292 and 306 (Lety, 1997; Starks et al., 2019). Moreover, embC and embA (Ramaswamy et al., 2000) interferes with outer membranes permeability (Bakula et al., 2013). Current reviews managed to show no mutagenesis in embB, raising the question of having other mechanisms involved (Zhang and Yew, 2009). Analyses of the allelic exchange implied substitution of the amino acid (Sreevatsan et al., 1997) in which the most common shift was Gly406Ala at nucleotide position 1217 by the transformation of G ?C (Bakula et al., 2013) Mild, moderate, and major-level substitution have EMB MIC 20, 100, and >256microgram/ml respectively (Telanti et al., 1997).
Pyrazinamide
Pyrazinamide, like isoniazid and ethionamide, is a prodrug that requires mycobacterial enzyme pyrazinamidase for its conversion to pyrazinoic acid (Konno et al., 1967; Scorpio and zhang, 1996). Pyrazinamide introduction has shortened the TB treatment to 6 months (Mitchison, 1985). Various novel drug candidates are used together with pyrazinamide, in the mouse TB infection model, for optimal efficacy (K. Andries et al., 2005; Nuermberger et al., 2008). Postulated PAO action mechanism includes retardation in the kinetics of membrane, inhibition of membrane transmission, the production of Co-enzyme A, and increase in acidity of cell plasma (Zhang et al., 2003; Njire et al., 2016). Various studies propose fatty-acid synthase enzyme Type-I as a Pyrazinamide target (Zimhony et al., 2007; Zimhony et al., 2000). Pyrazinamide encoding pncA gene mutation is majorly linked to decreased PZA susceptibility (Scorpio et al., 1997; Palomino et al., 2014). Unlike isoniazid, the domain for mutation of PZA is significant (Pym et al., 2002). However, few PZA resistant strains possess no pncA mutations (Cheng et al., 2000; Smith et al., 2013), which hints at an alternative mechanism. Several studies reveal the overexpression of the rpsA gene accounts for PZA resistance (Shi et al., 2011). Detailed analysis of rpsA gene, in resistant strains without pncA, indicated deletion of 3 base pairs GCC, leading to the exit of Ala 438 (Boni et al., 2000 ). Concerns exist over the contribution of rpsA in PZA resistance, which may conclude, need for further studies.
Streptomycin
Streptomycin, classified as a glycoside anti-microbial
agent, was the initial curative agent for TB (Tasha et al., 2013), introduced in 1942 (Dookie et al., 2018). Streptomycin adheres irreversibly to s12 protein in ribosomes and 16s rRNA (Moazed and Noller 1987; Finken et al., 1993), leading to inhibition of translation (Ruusala and Kurland, 1984), and interference with ribosomal proofreading (Winder, 1982). Initially, mycobacterium tuberculosis was susceptible to SM. Gradually, resistance evolved due to mono drug therapy (Crofton and Mitchison, 1948). Mutations in rrs or rpsL genes account majorly for SM resistance. Simultaneous genetic variation in rrs or rpsL genes are rarely observed. Predominantly, rpsL gene alterations were at codon 43 and 88 while, codon 513 and 516 were observed for rrs gene (Betzaida et al., 2013). Investigation deduced the participation of gidB gene, in mild resistance (Verma et al., 2014; Spies et al., 2008; Okamoto et al., 2007). Further, mechanisms, including efflux pumps and cell membrane disruptions, may also confer resistance.
Second-Line Drugs
Injectables Aminoglycosides
WHO (World Health Organization) reported 480,000 cases of MDR (Multi-Drug Resistance) Tuberculosis across the globe in 2014 (Zulma et al., 2015). Currently, Aminoglycoside Injectables KAN, AMK, (Johansen et al., 2006) and Tuberactinomycin CAP and viomycin (Akbergenov et al., 2011) are being used as potential drugs against MDRT (Reeves et al., 2013). Therapy through these medications is complicated, expensive, and hazardous due to its lengthy timeframe (Quenard et al., 2017; Zimen et al., 2013).
Kanamycin (KAN) was discovered in 1957 and clinically used in 1958 (WHO, 2009), producing its remarkable bactericidal effects (Hota et al., 2018; WHO, 2009). The action mechanism of aminoglycoside includes hampering of protein synthesis when it adheres with the 30S subunit in the ribosomes (Zaunbrecher et al., 2009). A research study found three rss gene mutations appearing in A140G, G1484T and C1402T (Jugheli et al., 2009; Maus et al., 2005) inevitably results in cross-resistance amongst Capreomycin, Kanamycin and Amykacin (Campbell et al., 2011). Further investigations reported conformational changes and mutation in eis gene, resulting in accelerated expression of eis, which inactivates the KAN (Reeves et al., 2013; Abraham et al., 2020) but not AMK (Zaunbrecher et al., 2009). The same author suggests substitution in whiB7 of transcriptional activator provoking enhanced whiB7 transcripts, which ultimately leads to increased expressions of eis (Rv2416c) and tap (Rv1258c) (Reeves et al., 2013).
Capreomycin (CAP) is being extensively used against XDRT since 2006 after replacing KAN and AMK (Georghiou et al., 2012). CAP and Viomycin are bacteriostatic anti-microbial agents that bind to 50S subunits interfering with the translation process through intersubunit bridge B2a (Stanley et al., 2010) but do not interfere with mRNA (Tsukamura, 1969). Resistance transpired due to genetic variation in the tlyA gene (Brossier et al., 2017), causing the absence of the methylation process in rRNA (Johansen et al., 2006).
Fluoroquinolones
Fluoroquinolones, possessing robust bactericidal activity, are classified amongst second-line drug therapy for TB (Almeida et al., 2011). Nalidixic acid derivatives include ciprofloxacin, ofloxacin, and a few novel compounds such as gatifloxacin and moxifloxacin (Dookie et al., 2018). Majorly FQ’s inhibit topoisomerase II (Aubry et. al 2004) and IV (Zhang and Yew, 2005; Bernard et al., 2015), resulting in DNA breakdown and microbial fatality (Andriole, 2005). FQ’s decrease susceptibility is associated with aminoacid switching of gyrA and gyrB genes (Takiff et al., 1994; Che et al., 2017; Smith et al., 2013). Studies reveal the predominant role gyrA gene over gyrB (Smith et al., 2013). Alanine 90 and Aspartate 94 account majorly in gyrA gene mutation (Sun et al., 2008). Contrarily, codon 74, 88, and 91 role is limited (Maruri et al., 2012; Aubry et al., 2006; Matrat et al., 2006). For significant FQ’s resistance, double amino acid substitution in gyrA or co-occurring mutations in gyr A and gyr B are prerequisites (Takiff et al., 1994; Kocagöz et al., 1996). Alteration in cell membrane permeability to the drug (Almeida et al., 2011) and efflux-pump is significant in mediating resistance (Escribano et al., 2007; Takiff et al., 1996; Cambau et al., 1996; Jarlier and Nikaido 1994). Further, MfpA protein, homologous to DNA structure, binds to topoisomerase II and inturn inhibits its action (Hegde et al., 2005), resulting in minor resistance (Smith et al., 2013; Ginsburg et al., 2003).
Ethionamide
Ethionamide, a second line structural analogue of isoniazid, is mainly utilized in multi-drug resistant tuberculosis therapy (Engohang-Ndong et al., 2004). Similar to isoniazid, ETH is a prodrug and possesses a common pathway, which may result in cross-resistance (Morlock et al., 2003). ETH may get activated by enzymatic action and bacterial metabolism (alian et al., 2017). Obstruction in the production of mycolic acid results in the breakdown of cell wall biosynthesis by activated drug (Morlock et al., 2003).
ETH resistance may result from ethA and inhA mutations (Jacob et al., 1994; Clifton et al., 2000). Structural variations in C15–T of inhA are predominantly responsible for reduced susceptibility to ethionamide (Vannelli et al., 2002). Additionally, inhA-based ETH resistance may also conform to the cross-resistance of isoniazid (Diana et al., 2013). Studies demonstrate ethA expression is opposed by neighboring ethR gene (Engohang-Ndong et al., 2004).
Para-Amino Salicylic Acid
In combinational therapy against Tuberculosis, second-line Para aminosalicylic acid (PAS) has been functioning since 1940 (Sumit et al., 2013; Lehmann, 1946; Dye et al., 2002). Being less tolerated and toxic, its consumption was decreased dramatically (Iwainsky, 1988).
Constrained growth of tubercle bacilli, attributed to the bacteriostatic drug disposition, is expected to be driven through impeding the synthesis of folic acid (Dye et al., 2002) and cell wall component mycobactin. (Vanessa et al., 2009).
The primary explanation for the susceptibility against PAS takes place on account of mutagenesis of thyA and drfA coding region, pertaining to the biosynthesis of thymine nucleotide (Pablo et al., 2009; Mitnick et al. 2003; sumit Chakraborty et al., 2013). Maximum gene variations in thyA were recorded in TB patients from China (Bharti et al., 2019).
Novel or Repurposed Drugs
Bedaquiline
Bedaquiline, a diarylquinoline drug, seems to possess an unorthodox action mechanism against TB (Hendrik et al., 2014). WHO warned of deliberate drug administration, encouraging the emergence of resistance (Kenny et al., 2014). BDQ resistance, typically attributed to the mutations in atpE, Rv0678, intergenic region between Rv0678 and Rv0677c, and pepQ (Rv2435c) genes (N. Engyl et al., 2015; Kenny et al., 2014). In addition, the substitution of Rv0678 gene, acting as an inhibitor of the efflux pump, results in minute resistance (Amber, 2017). Polymorphisms in the Rv1979c and PepQ (Rv2535c) genome is affiliated with concomitant resistance in clofazimine (CFZ) (Deepak et al., 2016).
Nitroimidazole
Nitroimidazole antibiotics were discovered in the late 1950s (Ang et. al., 2017). New prodrugs, Delamanid and Pretomanid, require bioactivation of nitro group to exert its bactericidal action, against both replication and hypoxic nonreplicating Tuberculosis, by decreased production of mycolic acid during outer membrane formation (Matsumoto et al., 2006; Samuelson, 1999), and nitric oxide release (Lamprecht et al., 2016; Singh et al., 2008), causing respiratory poisoning respectively. Resistance occurs by decreased activity/expression or mutation of reductive enzyme Ddn (Haver et al., 2015), which catalyzes menaquinone, only present in Mycobacterium Tuberculosis (Ang et al., 2017). Ddn enzyme is F420H2-Dependent (Gurumurthy et al., 2013). Genomic sequence study showed 46 no-synonymous substitutions, among which several mutants were unable to activate the drug 2 and deletion of Ddn quinone reductase(Jing et al., 2019). Variation in three binding sites (S78, Y130, Y136) and polymorphism (SNP) of genes of Ddn affect the nitroimidazole activating activity and confer to the resistance of the drug (Mohamed et al., 2016; Haver et al., 2015). The study has also shown the difference of activity between two drugs against resistant mutant. Out of 75 mutants studied, 65 did not reduce the Delamanid, while 50 were unable to decrease Pretomanid (Lee et al., 2020; Cellitti et al., 2012; Mohamed et al., 2016). It was also revealed that Mutations in Ddn also cause the transmission of disease (Ai et al., 2016).
Phenothiazine (Chloramphenicol and Thioridazine)
Phenothiazines discovered in 1883 (Masie, 1954) are tricyclic, anti-psychotic, “Non-Antibiotic” anti-microbial agents expecting broad-spectrum intervention that modifies the cell permeability, illustrating synergistic effect along with other anti-microbial agents (Amaral and Molnar, 1991; Kristiansen and Amaral, 1997; Amaral et al., 2001). Phenothiazine compounds such as Chlorpromazine (CPZ) and Thioridazine (TDZ), share the same potential activity against MDRTB and XDRTB (Ordway et al., 2003; Amaral et al. 2004; Viveiros and Amaral, 2001).
CPZ was formulated in 1950 as an anti-psychotic agent along with many nasty consequences (BMA. 2010), but reconsidered as a potential anti-MDRTB (Alsaad et al., 2014). The concentration used 15-20mg/L is higher than the clinically indicated value for a chronic patient (Molnar et al., 1997). CPZ produces its effect by preventing the growth and killing Mtb (Amaral and Viveiros, 2012).
TDZ being less noxious, replaced the CPZ (Amaral et al., 1996). When given in combination at a dose of 200mg/day, it contributes by interfering with gene expression, inhibition of efflux pump, suppression of replication, and retardation of Ca++ and K+ transport process that leads to complete extrusion and killing of bacteria (Amaral and Viveiros, 2012; Amaral and Mornal, 2012).
According to an electronic database study, other anti-microbial agents that could be used against XDRTB include doxycycline, and Co-trimoxazole, and metronidazole which are not on the WHO list (Alsaad et al., 2014).
SQ109 (Ethambutol Analogue)
SQ109 is a potent anti-MDRTB agent (Onajole et al., 2010) having a bactericidal activity (Boeree, 2017) that entered as an improved analogue of ethambutol in the clinical trials (Lee et al., 2003). SQ109 reported low bioavailability due to the first-pass effect and boosted up to 91.4% by administering as a prodrug (Meng et al., 2009). It targets the mycobacterial cell wall by lessening the mycolic acid concentration (Tetli et al., 2020); conversely, it acts as an inhibitor of the efflux pump (Te Brake et al., 2016). Moreover, it is also associated with MmpL3 inhibition (Tetli et al., 2020).
Susceptibility in SQ109 tends to happen by mutagenesis in MmpL3 (Umumarararngu et al., 2020). Recent research indicates impaired menaquinone synthesis, ATP synthesis, and cellular respiration on the cytoplasmic membrane (Tetli et al., 2020). The activity of SQ109 is concentration-dependent as complete extrusion happens at a concentration of 256mg/L and kills 99% Mtb when exposed to 64mg/mL within one day (de Knegt et al., 2017). Synergistic effects are seen when SQ109 is combined along with isoniazid, rifampicin, and Bediquline, while augmented effects are noted with Streptomycin and Suetozid (PNU-100480) in in-vitro studies (Umumarararngu et al., 2020).
Linezolid
Linezolid, the member of oxazolidinones, possesses
considerable in vivo and in vitro action against TB (Alcala et al., 2003; Cynamon et al., 1999). LZD inhibits the initial phase in protein formation by binding to 50s ribosomal subunit (Zhang, 2005; Escribano et al., 2007). G2572T and G2061T genetic variations in the rrl, leads to Anti-TB drug’s resistance (Navisha Dookie, 2018). Resistance results in elevation of MIC of 4–8 mg/L to 16–32 mg/L range (Hillemann et al., 2008).C154R mutation in the rplC gene also impart LZD resistance (Bloemberg et al., 2015). The role of efflux mechanisms or other non-ribosomal modifications cannot be neglected.
Clofazimine
Clofazimine is a drug known as riminophenazine, specifically developed for tuberculosis treatment in 1950 (Arbiser and Moschella, 1995). The precise action mechanism is uncertain, but neutrophil and monocyte appear to be the principal location of an operation where it prohibits the inflammatory action by scavenging hypochloric acid while preventing chlorination (Arbiser and Moschella, 1995). Also, bactericidal effect is produced by redox cycling of Clofazimine (Xu et al., 2017), shortening the therapy timeframe (Zhang et al., 2015)
Genetic variation in transcriptional repressor Rv0678 linked with mmpS5 and mmpL5 genes is correlated with the upregulation of efflux pumps, which tends to result in resistant strains (Yew et al., 2017; iu et al., 2020). Mutation involves the insertion and revocation of nucleotide G at 193 positions (Zhang et al., 2015). Further investigations revealed that Rv1979c involved in the transport of amino acids and, Rv2535c which encodes a proline aminopeptidase peptidase PepQ was spotted to be the risk factors of developing drug susceptibility (Zhang et al., 2015; Xu et al., 2017; Van et al., 2020). PepQ Rv3525c gene suggests mild resistance (Ameida et al., 2016; Xu et al., 2017). Research work reported 1.2microgram/ml MIC for Clofazimine. Adequate interventions can be made by constructing the MIC data to mitigate the transmission of resistant strains (Xu et al., 2017). Improved genetic knowledge can help in molecular diagnosis and monitoring of drug resistance (Kadura et al., 2020).
NAS 91 & NAS 21
In recent times, NAS 21 & NAS 91 exhibited promising anti-mycobacterial activity (Pedro, 2011). Being a dominant pharmacophore, NAS-91 acts as a
candidate for future inhibitors (Choi et al., 2000).
According to M. bovis BCG examination, FAS-II dehydratase coded by Rv0636 developed the main target for resistance (Veemal, 2009). Partial obstruction of mycolic acid biosynthesis, as well as
the variation in oleic acid production, occurs as a consequence of upregulated Rv0636 gene analogue. The oleic acid synthesis was inhibited, as demonstrated by an assay (Eduardo et al., 2011).
Benzothiazinone
Benzothiazinone is classified amongst potential tuberculosis treatment therapies (Variam et al., 2017). DprE1 enzyme and its inhibitors are a member of newly introduced TB medications. (Inshad et al., 2016). DprE1 and DprE2 speed up the conversion of DPR to its epimer DPA. Mycobacterial outer membrane production is modulated by DPA (Inshad et al., 2016). Mechanistic studies revealed the importance of the NO2 and Sulfur groups for anti-TB activity at position 8 and 1, respectively. Further, Trifluoromethyl significant role was also highlighted against Tuberculosis (Monika et al., 2016).
Conclusion
Decreased anti-microbial drug susceptibility against M. Tuberculosis presents a great challenge to human health globally. The inception of resistance to anti-tubercular drugs is restricting the treatment options, which tends to be a great threat to human life, especially in developing countries. New therapy regimens, surveillance studies, and strategies for early diagnosis of declined drug susceptibility deemed mandatory.
References
- Valim, A. R. Rossetti,M. L. Ribeiro, M. O. & Zaha, A. (2000).
- Zaczek, A. Brzostek, E. Augustynowicz-Kopec, Z. Zwolska, & Dziadek, J. (2009).
- Abraham, A. O., Nasiru, A. U., AbdulAzeez, A. K., Seun, O. O., & Ogonna, D. W. (2020). Mechanism of Drug Resistance in Mycobacterium Tuberculosis. American Journal of Biomedical Science & Research, 7(5), 378-383.
- Ahmad, N., Ahuja, S. D., Akkerman, O. W., Alffenaar, J. C., Anderson, L. F., Baghaei, P., et al. (2018). Treatment correlates of successful outcomes in pulmonary multidrug- resistant Tuberculosis: an individual patient data meta-analysis. Lancet 392, 821-834. doi: 10.1016/S0140- 6736(18)31644-1.
- Ai, J. W., Ruan, Q. L., Liu, Q. H., & Zhang, W. H. (2016). Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerging microbes & infections, 5(1), 1-8.
- Akbergenov, R., Shcherbakov, D., Matt, T., Duscha, S., Meyer, M., Wilson, D. N., & Böttger, E. C. (2011). Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Anti-microbial agents and chemotherapy, 55(10), 4712- 4717.
- Alcalá, L., Ruiz-Serrano, M. J., Pérez-Fernández Turégano, C., GarcÃÂa De Viedma, D., DÃÂaz- Infantes, M., MarÃÂn-Arriaza, M., & Bouza, E. (2003). In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrobial agents and chemotherapy, 47(1), 416-417.
- Almeida Da Silva, P. E., & Palomino, J. C. (2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis:classical and new drugs. The Journal of anti-microbial chemotherapy, 66(7), 1417- 1430.
- Almeida, D., Ioerger, T., Tyagi, S., Li, S. Y., Mdluli, K., Andries, K., et al. (2016). Mutations in pepQ Confer Low-level resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 60, 4590-4599. doi: 10.1128/AAC.00753-16.
- Alsaad, N., Wilffert, B., van Altena, R., de Lange, W. C., van der Werf, T. S., Kosterink, J. G., & Alffenaar, J. W. C. (2014). Potential anti- microbial agents for the treatment of multidrug-resistant Tuberculosis. European Respiratory Journal, 43(3), 884-897.
- Amaral, L. E. O. N. A. R. D., & Lorian, V. I. C. T. O. R. (1991). Effects of chlorpromazine on the cell envelope proteins of Escherichia coli. Anti-microbial agents and chemotherapy, 35(9), 1923-1924.
- Amaral, L., & Molnar, J. (2012). Potential therapy of multidrug-resistant and extremely drug- resistant Tuberculosis with thioridazine. in vivo, 26(2), 231-236.
- Amaral, L., & Viveiros, M. (2012). Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. International journal of anti-microbial agents, 39(5), 376-380.
- Amaral, L., Kristiansen, J. E., Abebe, L. S., & Millett, W. (1996). Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed Tuberculosis. Journal of Antimicrobial Chemotherapy, 38(6), 1049-1053.
- Amaral, L., Kristiansen, J. E., Viveiros, M., & Atouguia, J. (2001). Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. Journal of Antimicrobial Chemotherapy, 47(5), 505-511.
- Amaral, L., Viveiros, M., & Kristiansen, J. E. (2001). Phenothiazines: potential alternatives for the management of antibiotic resistant infections of Tuberculosis and malaria in developing countries. Tropical Medicine & International Health, 6(12), 1016-1022.
- Amaral, l., viveiros, m., & molnar, j. (2004). Anti- microbial activity of phenothiazines. In vivo, 18(6), 725-732.
- Ando, H., Miyoshi-Akiyama, T., Watanabe, S., & Kirikae, T. (2014). A silent mutation in mabA confers isoniazid resistance on M ycobacterium tuberculosis. Molecular microbiology, 91(3), 538-547.
- Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., et al. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223-227. doi: 10.1126/science.1106753.
- Andries, K., Villellas, C., Coeck, N., Thys, K., Gevers, T., Vranckx, L., et al. (2014). Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9: e102135. doi: 10.1371/journal.pone.0102135.
- Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., & Williams, P. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 307(5707), 223- 227.
- Andriole, V. T. (2005). The quinolones: past, present, and future. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 41 Suppl 2, S113-S119.
- Ang, C. W., Jarrad, A. M., Cooper, M. A., & Blaskovich, M. A. (2017). Nitroimidazoles: molecular fireworks that combat a broad spectrum of infectious diseases. Journal of Medicinal Chemistry, 60(18), 7636-7657.
- Arbiser, J. L., & Moschella, S. L. (1995). Clofazimine: a review of its medical uses and mechanisms of action. Journal of the American Academy of Dermatology, 32(2), 241-247
- Arora, S. K. (1981). Structural investigations of mode of action of drugs. III. Structure of rifamycin S iminomethyl ether. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 37(1), 152-157.
- Aubry, A., Veziris, N., Cambau, E., Truffot-Pernot, C., Jarlier, V., & Fisher, L. M. (2006). Novel gyrase mutations in quinolone-resistant and-hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Anti-microbial Agents and Chemotherapy, 50(1), 104-112.
- Aubry, A., Pan, X. S., Fisher, L. M., Jarlier, V., & Cambau, E. (2004). Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with anti- mycobacterial drug activity. Anti-microbial agents and chemotherapy, 48(4), 1281-1288.
- Abraham, A. O. (2020). Mechanism of Drug Resistance in Mycobacterium Tuberculosis. - 7(5), AJBSR.MS.ID.001181. DOI:10.34297/AJBS R.2020.07.001181
- Kim, B. J., Kim, S. Y., Park, B. H. et al., (1997).
- Bakuła, Z., Napiórkowska, A., Bielecki, J., Augustynowicz-Kopeć, E., Zwolska, Z., & Jagielski, T. (2013). Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland. BioMed research international, 2013.
- Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K. S., Wilson, T., ... & Jacobs, W. R. (1994). inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 263(5144), 227- 230.
- Baulard, A. R., J. C. Betts, J. Engohang-Ndong, S. Quan, R. A. McAdam, P. J. Brennan, C. Locht, and G. S. Besra. (2000). Activation of the prodrug ethionamide is regulated in mycobacteria. J. Biol. Chem.275:28326- 28331.
- Bernard, C., Veziris, N., Brossier, F., Sougakoff, W., Jarlier, V., Robert, J., & Aubry, A. (2015). Molecular diagnosis of fluoroquinolone resistance in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 59(3), 1519-1524.
- Cuevas-Córdoba, B., Cuellar-Sánchez, A., Pasissi- Crivelli, A., Santana-ÃÂlvarez, C. A., Hernández-Illezcas, J., Zenteno-Cuevas, R., & rpsL. (2013), mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico, Journal of Microbiology, Immunology and Infection,Volume 46, Issue 1, Pages 30- 34,ISSN 1684-1182,
- Bloch, K. (1977). Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv. Enzymol. Relat. Areas Mol. Biol.45:1-84
- Bloemberg, G. V., Keller, P. M., Stucki, D., Trauner, A., Borrell, S., Latshang, T., Coscolla, M., Rothe, T., Hömke, R., Ritter, C., Feldmann, J., Schulthess, B., Gagneux, S., & Böttger, E. C. (2015). Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. The New England journal of medicine, 373(20), 1986-1988.
- Boeree, M. J., Heinrich, N., Aarnoutse, R., Diacon, A. H., Dawson, R., Rehal, S., & Minja, L. T. (2017). High-dose rifampicin, moxifloxacin, and SQ109 for treating Tuberculosis: a multi-arm, multi-stage randomized controlled trial. The Lancet infectious diseases, 17(1), 39-49.
- Bollela, V. R., Namburete, E. I., Feliciano, C. S., Macheque, D., Harrison, L. H., & Caminero, J. A. (2016). Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant Tuberculosis. The international journal of Tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 20(8), 1099-1104.
- Boni, I. V., Artamonova, V. S., & Dreyfus, M. (2000). The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. Journal of bacteriology, 182(20), 5872-5879.
- British Medical Association. (2010). Pharmaceutical Society of Great Britain: British National Formulary 59.
- Brossier, F., Pham, A., Bernard, C., Aubry, A., Jarlier, V., Veziris, N., & Sougakoff, W. (2017). Molecular investigation of resistance to second-line injectable drugs in multidrug- resistant clinical isolates of Mycobacterium tuberculosis in France. Anti-microbial agents and chemotherapy, 61(2).
- Brossier, F., Veziris, N., Truffot-Pernot, C., Jarlier, V., & Sougakoff, W. (2011). Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 55(1), 355-360.
- Brown, A. K. A., Bhatt, A., Singh, E., Saparia, A. F. E., & Besra. G. S., (2007). Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology153:4166-4173.
- Campbell, J. W., & J. E. Cronan, J. (2001). Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol.55:305-332.
- Campbell, P. J., Morlock, G. P., Sikes, R. D., Dalton, T. L., Metchock, B., Starks, A. M., ... & Posey, J. E. (2011). Molecular detection of mutations associated with first-and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 55(5), 2032-2041.
- Cars, O., Högberg, L. D., Murray, M., Nordberg, O., Sivaraman, S., Lundborg, C. S., ... & Tomson, G. (2008). Meeting the challenge of antibiotic resistance. Bmj, 337, a1438.
- Caws, M., Duy, P. M., Tho, D. Q., Lan, N. T. N., & Farrar, J. (2006). Mutations prevalent among rifampin-and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. Journal of clinical microbiology, 44(7), 2333-2337.
- Cellitti, S. E., Shaffer, J., Jones, D. H., Mukherjee, T., Gurumurthy, M., Bursulaya, B., ... & Cherian, J. (2012). Structure of Ddn, the deazaflavin-dependent nitroreductase rom Mycobacterium tuberculosis involved in bioreductive activation of PA- 824. Structure, 20(1), 101-112.
- Centers for Disease Control and Prevention. (2006). Revised definition of extensively drug- resistant Tuberculosis. MMWR Morb Mortal Wkly Rep, 55(1176), 1.
- Che, Y., Song, Q., Yang, T., Ping, G., & Yu, M. (2017). Fluoroquinolone resistance in multidrug- resistant Mycobacterium tuberculosis independent of fluoroquinolone use. The European respiratory journal, 50(6), 1701633.
- Cheng, A. F., Yew, W. W., Chan, E. W., Chin, M. L., Hui, M. M., & Chan, R. C. (2004). Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Anti-microbial agents and chemotherapy, 48(2), 596— 601.
- Cheng, S. J., Thibert, L., Sanchez, T., Heifets, L., & Zhang, Y. (2000). pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Anti-microbial agents and chemotherapy, 44(3), 528-532.
- Crofton, j., & mitchison, d. A. (1948). Streptomycin resistance in pulmonary Tuberculosis. British medical journal, 2(4588), 1009-1015.
- Cynamon, M. H., Klemens, S. P., Sharpe, C. A., & Chase, S. (1999). Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Anti- microbial agents and chemotherapy, 43(5), 1189-1191.
- De Knegt, G. J., van der Meijden, A., de Vogel, C. P., Aarnoutse, R. E., & de Steenwinkel, J. E. (2017). Activity of moxifloxacin and linezolid against Mycobacterium tuberculosis in combination with potentiator drugs verapamil, timcodar, colistin and SQ109. International journal of anti-microbial agents, 49(3), 302-307.
- Deng, L., Mikusová, K., Robuck, K. G., Scherman, M., Brennan, P. J., & McNeil, M. R. (1995). Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Anti-microbial agents and chemotherapy, 39(3), 694-701.
- Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S., & Naidoo, K. (2018). Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. The Journal of anti- microbial chemotherapy, 73(5), 1138-1151.
- Dutta, Noton & Karakousis, Petros. (2017). Mechanisms of Action and Resistance of the Anti-mycobacterial Agents. 10.1007/978-3-319-46718-4_25.
- E. Cambau, V. Jarlier,Resistance to quinolones in mycobacteria, Research in Microbiology,Volume 147, Issues 1- 2,1996, Pages 52-59, ISSN 0923-2508, https://doi.org/10.1016/0923- 2508(96)80204-X.
- Escribano, I., RodrÃÂguez, J. C., Llorca, B., GarcÃÂa- Pachon, E., Ruiz, M., & Royo, G. (2007). Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy, 53(6), 397-401.
- Ferber D. Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics. Science. 2005 Jun 3;308(5727):1393. doi: 10.1126/science.308.5727.1393a. PMID: 15933168.
- Finken, M., Kirschner, P., Meier, A., Wrede, A., & Böttger, E. C. (1993). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular microbiology, 9(6), 1239-1246.
- Fulco, A. J., and K. Bloch. 1964. Cofactor requirements for the formation of delta-9- unsaturated fatty acids in Mycobacterium phlei. J. Biol. Chem.239:993-997.
- Gandhi, N. R., Nunn, P., Dheda, K., Schaaf, H. S., Zignol, M., Van Soolingen, D., ... & Bayona, J. (2010). Multidrug-resistant and extensively drug-resistant Tuberculosis: a threat to global control of Tuberculosis. The Lancet, 375(9728), 1830-1843. Gandhi, N. R., Nunn, P., Dheda, K., Schaaf, H. S., Zignol, M., Van Soolingen, D., ... & Bayona, J. (2010). Multidrug-resistant and extensively drug- resistant Tuberculosis: a threat to global control of Tuberculos
- Georghiou, S. B., Magana, M., Garfein, R. S., Catanzaro, D. G., Catanzaro, A., & Rodwell, T. C. (2012). Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PloS one, 7(3), e33275.
- Ghajavand, H., Kargarpour Kamakoli, M., Khanipour, S., Pourazar Dizaji, S., Masoumi, M., Rahimi Jamnani, F., et al. (2019). High prevalence of bedaquiline resistance in treatment- naive tuberculosis patients and verapamil effectiveness. Antimicrob. Agents Chemother. 63: e02530-18. doi: 10.1128/AAC.02530-18
- Ginsburg, A. S., Grosset, J. H., & Bishai, W. R. (2003). Fluoroquinolones, Tuberculosis, and resistance. The Lancet. Infectious diseases, 3(7), 432-442.
- Goude, R., Amin, A. G., Chatterjee, D., & Parish, T. (2009). The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 53(10), 4138-4146.
- Gurumurthy, M., Rao, M., Mukherjee, T., Rao, S. P., Boshoff, H. I., Dick, T., ... & Manjunatha, U. H. (2013). A novel F420-dependent anti- oxidant mechanism protects M ycobacterium tuberculosis against oxidative stress and bactericidal agents. Molecular microbiology, 87(4), 744-755.
- Hartkoorn, R. C., Uplekar, S., and Cole, S. T. (2014). Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 2979-2981. doi: 10.1128/AAC.00037-14
- Haver, H. L., Chua, A., Ghode, P., Lakshminarayana, S. B., Singhal, A., Mathema, B., ... & Bifani, P. (2015). Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro- selected PA-824-resistant mutants of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 59(9), 5316-5323.
- Hazbón, M. H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero, M. I., Varma- Basil, M., Billman-Jacobe, H., Lavender, C., Fyfe, J., GarcÃÂa-GarcÃÂa, L., León, C. I., Bose, M., Chaves, F., Murray, M., Eisenach, K. D., Sifuentes-Osornio, J., Cave, M. D., Ponce de León, A., & Alland, D. (2006). Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrobial agents and chemot
- Hegde, S. S., Vetting, M. W., Roderick, S. L., Mitchenall, L. A., Maxwell, A., Takiff, H. E., & Blanchard, J. S. (2005). A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science, 308(5727), 1480-1483.
- Hillemann, D., Rüsch-Gerdes, S., & Richter, E. (2008). In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Anti-microbial agents and chemotherapy, 52(2), 800-801.
- Hotta K, Kondo S. Kanamycin and its derivative, arbekacin: significance and impact. J Antibiot (Tokyo). 2018 Mar;71(4):417- 424. doi: 10.1038/s41429-017-0017-8. Epub 2018 Feb 5. PMID: 29402999.
- Howard P, Twycross R, Grove G, Charlesworth S, Mihalyo M, Wilcock A. Rifampin (INN Rifampicin). J Pain Symptom Manage. 2015 Dec;50(6):891-5.
- Huitric, E., Verhasselt, P., Koul, A., Andries, K., Hoffner, S., and Andersson, D. I. (2010). Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother. 54, 1022-1028. doi: 10.1128/AAC.01611-09
- oerger, T. R., Feng, Y., Chen, X., Dobos, K. M., Victor, T. C., Streicher, E. M., ... & Sacchettini, J. C. (2010). The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC genomics, 11(1), 670.
- smail, N. A., Omar, S. V., Joseph, L., Govender, N., Blows, L., Ismail, F., et al. (2018). Defining Bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: a retrospective cohort study. Ebiomedicine 28, 136-142. doi: 10.1016/j.ebiom.2018.01.005
- Isolates. Antimicrob Agents Chemother, 2015
- wainsky, H. (1988) Mode of action, biotransformation and pharmacokinetics of ant tuberculosis drugs in animals and man. In Antituberculosis Drugs. K. Bartmann (ed.). Berlin: Springer-Verlag, pp. 457- 465.
- Jadaun, G. P. S., Das, R., Upadhyay, P., Chauhan, D. S., Sharma, V. D., & Katoch, V. M. (2009). Role of embCAB gene mutations in ethambutol resistance in Mycobacterium tuberculosis isolates from India. International journal of anti-microbial agents, 33(5), 483-486.
- Jagielski, T., Bakuła, Z., Roeske, K., Kamiński, M., Napiórkowska, A., Augustynowicz-Kopeć, E., ... & Bielecki, J. (2014). Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. Journal of Antimicrobial Chemotherapy, 69(9), 2369-2375.
- Jarlier, V., & Nikaido, H. (1994). Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS microbiology letters, 123(1-2), 11-18.
- Jeong, I., Park, J. S., Cho, Y. J., Yoon, H. I., Song, J., Lee, C. T., & Lee, J. H. (2015). Drug- induced hepatotoxicity of anti-tuberculosis drugs and their serum levels. Journal of Korean medical science, 30(2), 167-172.
- Jing, W., Zhang, T., Zong, Z., Xue, Y., Shang, Y., Wang, F., ... & Pang, Y. (2019). Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug- resistant Tuberculosis. European Journal of Clinical Microbiology & Infectious Diseases, 38(7), 1293-1296.
- Johansen, S. K., Maus, C. E., Plikaytis, B. B., & Douthwaite, S. (2006). Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Molecular cell, 23(2), 173-182.
- Johnsson, K., Froland, W. A., & Schultz, P. G. (1997). Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. Journal of Biological Chemistry, 272(5), 2834-2840.
- Jugheli, L., Bzekalava, N., de Rijk, P., Fissette, K., Portaels, F., & Rigouts, L. (2009). High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Anti- microbial agents and chemotherapy, 53(12), 5064-5068.
- Kadura, S., King, N., Nakhoul, M., Zhu, H., Theron, G., Köser, C. U., & Farhat, M. (2020). Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Journal of Antimicrobial Chemotherapy.
- Kandler, J. L., Mercante, A. D., Dalton, T. L., Ezewudo, M. N., Cowan, L. S., Burns, S. P., Metchock, B., Global PETTS Investigators, Cegielski, P., & Posey, J. E. (2018). Validation of Novel Mycobacterium tuberculosis Isoniazid Resistance Mutations Not Detectable by Common Molecular Tests. Anti-microbial agents and chemotherapy, 62(10), e00974-18.
- Kaniga, K., Cirillo, D. M., Hoffner, S., Ismail, N. A., Kaur, D., Lounis, N., et al. (2016). A multilaboratory, multicounty study to determine bedaquiline MIC quality control ranges for phenotypic drug susceptibility testing. J. Clin. Microbiol. 54, 2956-2962. doi: 10.1128/JCM.01123-16
- Kashiwabara, Y., H. Nakagawa, G. Matsuki, and R. Sato. 1975. Effect of metal ions in the culture medium on the stearoyl-coenzyme A desaturase activity of Mycobacterium phlei. J. Biochem. (Tokyo)78:803-810
- Kocagöz, T., Hackbarth, C. J., Unsal, I., Rosenberg, E. Y., Nikaido, H., & Chambers, H. F. (1996). Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Anti- microbial agents and chemotherapy, 40(8), 1768-1774.
- Konno, K., Feldmann, F. M., & McDermott, W. (1967). Pyrazinamide susceptibility and amidase activity of tubercle bacilli. The American review of respiratory disease, 95(3), 461-469.
- Kremer, L., A. R. Baulard, and G. S. Besra. 2000. Genetics of mycolic acid biosynthesis, p.173-190. In G. F. Hatfull and W. R. Jacobs, Jr. (ed.), Molecular genetics of mycobacteria. ASM Press, Washington, DC.
- Kristiansen, J. E. (1993). Chlorpromazine: non- antibiotics with anti-microbial activity' new insights in managing resistance. Curr. Opin. Investig. Drugs, 2, 587-591
- Kristiansen, J. E., & Amaral, L. (1997). The potential management of resistant infections with non-antibiotics. The Journal of anti- microbial chemotherapy, 40(3), 319-327
- Lacoma, A., Garcia-Sierra, N., Prat, C., Maldonado, J., Ruiz-Manzano, J., Haba, L., ... & Dominguez, J. (2012). GenoType MTBDRsl for molecular detection of second-line- drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. Journal of clinical microbiology, 50(1), 30-36.
- Lamprecht, D. A., Finin, P. M., Rahman, M. A., Cumming, B. M., Russell, S. L., Jonnala, S. R., ... & Steyn, A. J. (2016). Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nature communications, 7(1), 1-14
- Larsen, M. H., Vilchèze, C., Kremer, L., Besra, G. S., Parsons, L., Salfinger, M., Heifets, L., Hazbon, M. H., Alland, D., Sacchettini, J. C., & Jacobs, W. R., Jr (2002). Overexpression of inhA, but not kasA, confers resistance to soniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Molecular microbiology, 46(2), 453-466.
- Lee, B. M., Harold, L. K., Almeida, D. V., Afriat-Jurnou, L., Aung, H. L., Forde, B. M., ... & Taylor, M. C. (2020). Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS pathogens, 16(2), e1008287.
- Lee, N., & Nguyen, H. (2020). Ethambutol. StatPearls [Internet].
- Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M., & Barry, C. E. (2003). Combinatorial lead optimization of [1, 2]- diamines based on ethambutol as potential antituberculosis preclinical candidates. Journal of combinatorial chemistry, 5(2), 172-187.
- Lehmann, J. (1946) para-Aminosalicylic acid in the treatment of Tuberculosis. Lancet i: 15- 16
- Lempens, P., Meehan, C. J., Vandelannoote, K., Fissette, K., de Rijk, P., Van Deun, A., ... & de Jong, B. C. (2018). Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Scientific reports, 8(1), 1-9.
- Lentz, F., Reiling, N., Martins, A., Molnár, J., & Hilgeroth, A. (2018). Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules (Basel, Switzerland), 23(4), 825.
- Lety, M. A., Nair, S., Berche, P., & Escuyer, V. (1997). A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Anti- microbial agents and chemotherapy, 41(12), 2629-2633.
- Leung, E. T. Y., Ho, P. L., Yuen, K. Y., Woo, W. L., Lam, T. H., Kao, R. Y., ... & Yam, W. C. (2006). Molecular characterization of isoniazid resistance in Mycobacterium tuberculosis: identification of a novel mutation in inhA. Anti-microbial agents and chemotherapy, 50(3), 1075-1078.
- Liu, Y., Gao, J., Du, J., Shu, W., Wang, L., Wang, Y., ... & Pang, Y. (2020). Acquisition of clofazimine resistance following bedaquiline treatment for multidrug- resistant Tuberculosis. International Journal of Infectious Diseases, 102, 392- 396.
- Makarov, V., Lechartier, B., Zhang, M., Neres, J., van der Sar, A. M., Raadsen, S. A., ... & Widmer, N. (2014). Towards a new combination therapy for Tuberculosis with next generation benzothiazinones. EMBO molecular medicine, 6(3), 372-383.
- Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., MartÃÂnez-Solano, L., & Sánchez, M. B. (2008). A global view of antibiotic resistance. FEMS microbiology reviews, 33(1), 44-65.
- Maruri, F., Sterling, T. R., Kaiga, A. W., Blackman, A., van der Heijden, Y. F., Mayer, C., Cambau, E., & Aubry, A. (2012). A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. The Journal of anti- microbial chemotherapy, 67(4), 819-831.
- Massie, S. P. (1954). The Chemistry of Phenothiazine. Chemical Reviews, 54(5), 797-833.
- Matrat, S., Veziris, N., Mayer, C., Jarlier, V., Truffot- Pernot, C., Camuset, J., Bouvet, E., Cambau, E., & Aubry, A. (2006). Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Anti-microbial agents and chemotherapy, 50(12), 4170-4173.
- Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., ... & Komatsu, M. (2006). OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against Tuberculosis in vitro and in mice. PLoS Med, 3(11), e466.
- Maus, C. E., Plikaytis, B. B., & Shinnick, T. M. (2005). Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 49(8), 3192-3197.
- Meng, Q., Luo, H., Liu, Y., Li, W., Zhang, W., & Yao, Q. (2009). Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorganic & medicinal chemistry letters, 19(10), 2808- 2810.
- Mitchison D. A. (1985). The action of antituberculosis drugs in short-course chemotherapy. Tubercle, 66(3), 219-225.
- Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389- 394.
- Mohamed, A. E., Condic-Jurkic, K., Ahmed, F. H., Yuan, P., O'Mara, M. L., Jackson, C. J., & Coote, M. L. (2016). Hydrophobic shielding drives catalysis of hydride transfer in a family of F420H2-dependent enzymes. Biochemistry, 55(49), 6908- 6918.
- Molnar, J., Beladi, I., & Földes, I. (1977). Studies on antituberculotic action of some phenothiazine derivatives in vitro. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie, 239(4), 521-526.
- Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re- emerging infectious diseases. Nature, 430(6996), 242-249.
- Morlock, G. P., Metchock, B., Sikes, D., Crawford, J. T., & Cooksey, R. C. (2003). ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Anti-microbial agents and chemotherapy, 47(12), 3799-3805.
- Mukherjee, T., & Boshoff, H. (2011). Nitroimidazoles for the treatment of TB: past, present and future. Future medicinal chemistry, 3(11), 1427-1454.
- Neu, H. C. (1994). Antimicrobial Chemotherapy, 1934-1994. Antimicrobics and Infectious Diseases Newsletter, 13(1), 1-8.
- Njire M Tan Y, Mugweru J, Wang C, Guo J, Yew W, et al. (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv Med Sci 61(1): 63-71.
- Nuermberger, E., Tyagi, S., Tasneen, R., Williams, K. N., Almeida, D., Rosenthal, I., & Grosset, J. H. (2008). Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of Tuberculosis. Anti- microbial agents and chemotherapy, 52(4), 1522-1524.
- Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., & Ochi, K. (2007). Loss of a conserved 7- methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Molecular microbiology, 63(4), 1096-1106.
- Onajole, O. K., Govender, P., van Helden, P. D., Kruger, H. G., Maguire, G. E., Wiid, I., & Govender, T. (2010). Synthesis and evaluation of SQ109 analogues as potential anti-tuberculosis candidates. European journal of medicinal chemistry, 45(5), 2075-2079.
- Ordway, D., Viveiros, M., Leandro, C., Bettencourt, R., Almeida, J., Martins, M., ... & Amaral, L. (2003). Clinical concentrations of thioridazine kill intracellular multidrug- resistant Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 47(3), 917-922.
- Organization, W. H. Global tuberculosis report 2018. (World Health Organization, 2018).
- Palomino, J. C., & Martin, A. (2014). Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel, Switzerland), 3(3), 317-340.
- Pandey, B., Grover, S., Kaur, J., & Grover, A. (2019). Analysis of mutations leading to para- aminosalicylic acid resistance in Mycobacterium tuberculosis. Scientific reports, 9(1), 1-15.
- Pym, A. S., Saint-Joanis, B., & Cole, S. T. (2002). Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infection and immunity, 70(9), 4955-4960.
- Quenard, F., Fournier, P. E., Drancourt, M., & Brouqui, P. (2017). Role of second-line injectable antituberculosis drugs in the treatment of MDR/XDR tuberculosis. International Journal of Antimicrobial Agents, 50(2), 252-254
- Raghunandanan, S., Jose, L., & Kumar, R. A. (2018). Dormant Mycobacterium tuberculosis converts isoniazid to the active drug in a Wayne's model of dormancy. The Journal of antibiotics, 71(11), 939'949.
- Ramaswamy, S. V., Amin, A. G., Göksel, S., Stager, C. E., Dou, S. J., El Sahly, H., ... & Musser, J. M. (2000). Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates ofMycobacterium Tuberculosis. Anti- microbial agents and chemotherapy, 44(2), 326-336.
- Rawat, R., Whitty, A., & Tonge, P. J. (2003). The isoniazid-NAD adduct is a slow, tight- binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13881-13886.
- Reeves, A. Z., Campbell, P. J., Sultana, R., Malik, S., Murray, M., Plikaytis, B. B., Shinnick, T. M., & Posey, J. E. (2013). Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5' untranslated region of whiB7. Anti- microbial agents and chemotherapy, 57(4), 1857-1865.
- Rivière, E., Whitfield, M. G., Nelen, J., Heupink, T. H., & Van Rie, A. (2020). Identifying isoniazid resistance markers to guide inclusion of high-dose isoniazid in tuberculosis treatment regimens: a systematic review. Clinical Microbiology and Infection.
- Ruusala, T., & Kurland, C. G. (1984). Streptomycin preferentially perturbs ribosomal proofreading. Molecular and General Genetics MGG, 198(1), 100-104.
- Foongladda, S., Roengsanthia, D., Arjrattanakool, W., Chuchottaworn, C., Chaiprasert, A., & Franzblau, S. G. (2002). Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease, 6(12), 1118-1122.
- Safi, H., Lingaraju, S., Amin, A., Kim, S., Jones, M., Holmes, M., McNeil, M., Peterson, S. N., Chatterjee, D., Fleischmann, R., & Alland, D. (2013). Evolution of high-level ethambutol-resistant Tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nature genetics, 45(10), 1190-1197.
- Samuelson, J. (1999). Why metronidazole is active against both bacteria and parasites. Anti- microbial agents and chemotherapy, 43(7), 1533-1541.
- Scorpio, A., & Zhang, Y. (1996). Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nature medicine, 2(6), 662-667.
- Scorpio, A., Lindholm-Levy, P., Heifets, L., Gilman, R., Siddiqi, S., Cynamon, M., & Zhang, Y. (1997). Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 41(3), 540-543.
- Sebastian M. Gygli, Sonia Borrell, Andrej Trauner, Sebastien Gagneux, Anti-microbial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives, FEMS Microbiology Reviews, Volume 41, Issue 3, May 2017, Pages 354- 373,
- Seifert, M., Catanzaro, D., Catanzaro, A., & Rodwell, T. C. (2015). Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PloS one, 10(3), e0119628.
- Sherman, D. R., Mdluli, K., Hickey, M. J., Arain, T. M., Morris, S. L., Barry, C. E., & Stover, C. K (1996). Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science, 272(5268), 1641- 1643.
- Shi, W., Zhang, X., Jiang, X., Yuan, H., Lee, J. S., Barry, C. E., 3rd, Wang, H., Zhang, W., & Zhang, Y. (2011). Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science (New York, N.Y.), 333(6049), 1630-1632.
- Silva, M. S. N., Senna, S. G., Ribeiro, M. O., Valim, A. R., Telles, M. A., Kritski, A., ... & Rossetti, M. L. R. (2003). Mutations in katG, inhA, and ahpC genes of Brazilian isoniazid- resistant isolates of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 41(9), 4471-4474.
- Singh, R., Manjunatha, U., Boshoff, H. I., Ha, Y. H., Niyomrattanakit, P., Ledwidge, R., ... & Kang, S. (2008). PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 322(5906), 1392-1395.
- Smith, T., Wolff, K. A., & Nguyen, L. (2013). Molecular biology of drug resistance in Mycobacterium tuberculosis. Current topics in microbiology and immunology, 374, 53-80.
- Sotgiu, G., Centis, R., D'ambrosio, L., & Migliori, G. B. (2015). Tuberculosis treatment and drug regimens. Cold Spring Harbor perspectives in medicine, 5(5), a017822.
- Spies, F. S., da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Anti- microbial agents and chemotherapy, 52(8), 2947-2949.
- Sreevatsan, S., Stockbauer, K. E., Pan, X. I., Kreiswirth, B. N., Moghazeh, S. L., Jacobs, W. R., ... & Musser, J. M. (1997). Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Anti-microbial agents and chemotherapy, 41(8), 1677-1681
- Stanley, R. E., Blaha, G., Grodzicki, R. L., Strickler, M. D., & Steitz, T. A. (2010). The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nature structural & molecular biology, 17(3), 289.
- Starks, A. M., Gumusboga, A., Plikaytis, B. B., Shinnick, T. M., & Posey, J. E. (2009). Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 53(3), 1061-1066.
- Sun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., ... & Mei, J. (2012). Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. The Journal of infectious diseases, 206(11), 1724-1733.
- Sun, Z., Zhang, J., Zhang, X., Wang, S., Zhang, Y., & Li, C. (2008). Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. International journal of anti- microbial agents, 31(2), 115-121.
- Takayama, K., & Kilburn, J. O. (1989). Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Anti-microbial agents and chemotherapy, 33(9), 1493-1499.
- Takiff, H. E., Cimino, M., Musso, M. C., Weisbrod, T., Martinez, R., Delgado, M. B., ... & Jacobs, W. R. (1996). Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proceedings of the National Academy of Sciences, 93(1), 362-366.
- Takiff, H. E., Salazar, L., Guerrero, C., Philipp, W., Huang, W. M., Kreiswirth, B., Cole, S. T., Jacobs, W. R., Jr, & Telenti, A. (1994). Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Anti-microbial agents and chemotherapy, 38(4), 773- 780.
- Te Brake, L. H., Russel, F. G., van den Heuvel, J. J., de Knegt, G. J., de Steenwinkel, J. E., Burger, D. M., ... & Koenderink, J. B. (2016). Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis, 96, 150-157.
- Telenti, A., Imboden, P., Marchesi, F., Matter, L., Schopfer, K., Bodmer, T., ... & Cole, S. (1993). Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. The Lancet, 341(8846), 647- 651.
- Telenti, A., Philipp, W. J., Sreevatsan, S., Bernasconi, C., Stockbauer, K. E., Wieles, B., ... & Jacobs, W. R. (1997). The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature medicine, 3(5), 567- 570.
- Tetali, S. R., Kunapaeddi, E., Mailavaram, R. P., Singh, V., Borah, P., Deb, P. K., ... & Tekade, R. K. (2020). Current advances in the clinical development of anti-tubercular agents. Tuberculosis, 125, 101989.
- Thomas, J. P., Baughn, C. O., Wilkinson, R. G., & Shepherd, R. G. (1961). A new synthetic compound with antituberculous activity in mice: Ethambutol (dextro-2, 2′- (ethylenediimino)-di-1-butanol). American Review of Respiratory Disease, 83(6), 891- 893.
- Tseng, S. T., Tai, C. H., Li, C. R., Lin, C. F., & Shi, Z. Y. (2015). The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. Journal of Microbiology, Immunology and Infection, 48(3), 249- 255.
- Tsukamura, M. (1969). Cross-resistance relationships between capreomycin, kanamycin, and viomycin resistances in tubercle bacilli from patients. American Review of Respiratory Disease, 99(5), 780- 782.
- Tuberculosis. John S. Blanchard, Annual Review of Biochemistry, 2003.
- Umumararungu, T., Mukazayire, M. J., Mpenda, M., Mukanyangezi, M. F., Nkuranga, J. B., Mukiza, J., & Olawode, E. O. (2020). A review of recent advances in anti-tubercular drug development. Indian Journal of Tuberculosis.
- Vale, N., Gomes, P., & A Santos, H. (2013). Metabolism of the antituberculosis drug ethionamide. Current drug metabolism, 14(1), 151-158.
- Van Doorn, H. R., de Haas, P. E., Kremer, K., Vandenbroucke-Grauls, C. M., Borgdorff, M. W., & van Soolingen, D. (2006). Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at aminoacid position 315 of katG: a decade of experience in The Netherlands. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 12(8), 769-775.
- Van Dorp, L., Nimmo, C., Ortiz, A. T., Pang, J., Acman, M., Tan, C. C., ... & Pym, A. (2020). Detection of a bedaquiline/clofazimine resistance reservoir in Mycobacterium tuberculosis predating the antibiotic era. bioRxiv.
- Verma, J. S., Gupta, Y., Nair, D., Manzoor, N., Rautela, R. S., Rai, A., & Katoch, V. M. (2014). Evaluation of gidB alterations responsible for streptomycin resistance in Mycobacterium tuberculosis. The Journal of anti-microbial chemotherapy, 69(11), 2935-2941.
- Vilcheze, C., Weisbrod, T. R., Chen, B., Kremer, L., Hazbón, M. H., Wang, F., ... & Jacobs, W. R. (2005). Altered NADH/NAD ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Anti- microbial agents and chemotherapy, 49(2), 708-720.
- Vilchèze, C., & Jacobs, W. R., Jr (2007). The Mechanism of isoniazid killing: clarity through the scope of genetics. Annual review of microbiology, 61, 35-50.
- Vilchèze, C., Wang, F., Arai, M., Hazbón, M. H., Colangeli, R., Kremer, L., ... & Jacobs, W. R. (2006). Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nature medicine, 12(9), 1027-1029.
- Vilchèze, C., H. R. Morbidoni, T. R. Weisbrod, H. Iwamoto, M. Kuo, J. C. Sacchettini, and W. R. Jacobs, Jr. 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol.182:4059-4067.
- Villellas, C., Coeck, N., Meehan, C. J., Lounis, N., de Jong, B., Rigouts, L., et al. (2017). Unexpected high prevalence of resistance- associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J. Antimicrob. Chemother. 72, 684-690. doi: 10.1093/jac/dkw502
- Viveiros, M., & Amaral, L. (2001). Enhancement of antibiotic activity against poly-drug resistant Mycobacterium tuberculosis by phenothiazines. International journal of anti-microbial agents, 17(3), 225-228
- Wang, F., Jain, P., Gulten, G., Liu, Z., Feng, Y., Ganesula, K., ... & Jacobs, W. R. (2010). Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the anti-tubercular activity of isoniazid. Anti- microbial agents and chemotherapy, 54(9), 3776-3782.
- Willand, N. et al. Synthetic EthR inhibitors boost ant tuberculous activity of ethionamide. Nat Med 15, 537-544 (2009).
- Winder, FG (1982) Mode of action of the anti- mycobacterial agents and associated aspects of the molecular biology of mycobacteria. In The Biology of Mycobacteria - Vol I. Ratledge, C, and Stanford. J. (eds). London; Academic
- Wolucka, B. A., McNeil, M. R., de Hoffmann, E., Chojnacki, T., & Brennan, P. J. (1994). Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. The Journal of biological chemistry, 269(37), 23328-23335.
- World Health Organization [WHO] (2019a). Global Tuberculosis Report.
- World Health Organization. (2009). WHO report 2009-global tuberculosis control epidemiology, strategy, financing. World Health Organization.
- Wright, A., & Zignol, M. (2008). Anti-tuberculosis drug resistance in the world: fourth global report: the world health organization/international union against Tuberculosis and lung disease (who/union) global project on anti-tuberculosis drug resistance surveillance, 2002-2007. World Health Organization.
- Xu, J., Tozawa, Y., Lai, C., Hayashi, H., & Ochi, K. (2002). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3 (2). Molecular Genetics and Genomics, 268(2), 179-189.
- Xu, J., Wang, B., Hu, M., Huo, F., Guo, S., Jing, W., ... & Lu, Y. (2017). Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant Tuberculosis. Anti-microbial agents and chemotherapy, 61(6).
- Yamada, T. A. K. E. S. H. I., Nagata, A. K. I. H. I. S. A., Ono, Y. A. S. U. K. O., Suzuki, Y. A. S. U. H. I. K. O., & Yamanouchi, T. (1985). Alteration of ribosomes and RNA polymerase in drug-resistant clinical isolates of Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 27(6), 921-924.
- Ye, C., Williams, B.G., Espinal, M.A., and Raviglione, M.C. (2002) Erasing the world's slow stain: strategies to beat multidrug-resistant Tuberculosis. Science 295: 2042 - 2046.
- Yew, W. W., Liang, D., Chan, D. P., Shi, W., & Zhang, Y. (2017). Molecular mechanisms of clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 72(10), 2943-2944.
- Yu, J., Wu, J., Francis, K. P., Purchio, T. F., & Kadurugamuwa, J. L. (2005). Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 55(4), 528- 534.
- Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 106(47), 20004-20009.
- Zhang Y. (2005). The magic bullets and tuberculosis drug targets. Annual review of pharmacology and toxicology, 45, 529-564.
- Zhang, S., Chen, J., Cui, P., Shi, W., Zhang, W., & Zhang, Y. (2015). Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 70(9), 2507-2510.
- Zhang, Y., & Yew, W. W. (2009). Mechanisms of drug resistance in Mycobacterium tuberculosis. The international journal of Tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 13(11), 1320-1330.
- Zhang, Y., Heym, B., Allen, B., Young, D., & Cole, S. (1992). The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 358(6387), 591- 593.
- Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H., & Sun, Z. (2003). Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. The Journal of anti-microbial chemotherapy, 52(5), 790-795.
- Zhu, C., Liu, Y., Hu, L., Yang, M., & He, Z. G. (2018). Molecular Mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. Journal of Biological Chemistry, 293(43), 16741- 16750.
- Zimhony, O., Cox, J. S., Welch, J. T., Vilchèze, C., & Jacobs, W. R., Jr (2000). Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature medicine, 6(9), 1043 - 1047.
- imhony, O., Vilchèze, C., Arai, M., Welch, J. T., & Jacobs, W. R., Jr (2007). Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Anti-microbial agents and chemotherapy, 51(2), 752-754.
- Zumla, A., George, A., Sharma, V., Herbert, R. H. N., Oxley, A., & Oliver, M. (2015). The WHO 2014 global tuberculosis report-further to go. The Lancet Global Health, 3(1), e10- e12.
Cite this article
-
APA : Toor, S. G., Asif, M. F., & Abbas, H. (2017). Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis. Global Immunological & Infectious Diseases Review, II(I), 9-27. https://doi.org/10.31703/giidr.2017(II-I).02
-
CHICAGO : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. 2017. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II (I): 9-27 doi: 10.31703/giidr.2017(II-I).02
-
HARVARD : TOOR, S. G., ASIF, M. F. & ABBAS, H. 2017. Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis. Global Immunological & Infectious Diseases Review, II, 9-27.
-
MHRA : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. 2017. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II: 9-27
-
MLA : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II.I (2017): 9-27 Print.
-
OXFORD : Toor, Shabana Gulzar, Asif, Mohammad Faizan, and Abbas, Hafsa (2017), "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis", Global Immunological & Infectious Diseases Review, II (I), 9-27
-
TURABIAN : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review II, no. I (2017): 9-27. https://doi.org/10.31703/giidr.2017(II-I).02